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1 INTRODUCTION 

Wertz defines an attitude control system as “both the process and the hardware by which 

the attitude [of a spacecraft] is controlled” [1].   This thesis consists of the attitude control system 

design for the CubeSat class satellite designed and built by students at the University of Illinois, 

which is known as ION, Illinois Observing Nanosatellite.  As such, both of these aspects 

(process and hardware) of the attitude control system will be explored in detail.   

The attitude control hardware consists of a three-axis magnetometer to sample the Earth’s 

magnetic field, three torque coils mounted on each of ION’s three axes, and the microprocessor 

upon which the algorithms are implemented.  The process by which this hardware is used by the 

attitude control system will be explained in detail throughout the second section of the paper.   

This thesis will begin with a short introduction to CubeSat satellites in general.  It will 

then provide a short overview of ION in particular.  In the second section of the thesis, the 

attitude control hardware will be reviewed in detail.  The third section of the thesis will introduce 

some of the basic theory necessary to address attitude control problems.  The final section will 

include the algorithms that are implemented in the attitude control design.   
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2 CUBESAT OVERVIEW 

The section provides a brief overview of the CubSsat program.  It continues by 

discussing the history of the CubeSat at the University of Illinios.   

2.1 History of the CubeSat Program 

The construction of smaller satellites is currently a significant trend within the aerospace 

community.  The CubeSat program is part of this trend.  Traditionally, satellites have been built 

on a grand scale, designed over the course of many years (sometimes even up to a decade).  

Typical masses for these large satellites would often exceed 1000 kg, and budgets required to 

build them were also enormous.  Due to the accelerating advances of technology, many of the 

parts used on these satellites were obsolete before they were even launched.  However, since the 

1990s, satellite designs have gotten smaller.  Nanosatellites, or satellites with a mass between 1 

and 10 kg, have become more common.  The advantage of these small satellites is that they can 

be developed much faster and at considerably less expense.  Their small size also presents many 

more launch opportunities.  Nanosatellites are often launched as secondary payloads on various 

space missions.       

The CubeSat Project started in 1999 as a collaborative effort between California 

Polytechnic State University and Stanford University.  The project’s goal was to standardize the 

design of these nanosatellites.  The CubeSat standard specifies each satellite as a 10-cm cube of 

1-kg maximum mass.  The standard also provides additional guidelines for the location of a 

diagnostic port, a remove-before-flight pin, and deployment switches.  With this standardization, 

a number of satellites can be launched from a single deployment unit.  Thus, it is possible to 

drastically reduce the launch cost for any single satellite.  On June 30, 2003, the first six CubeSat 
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class satellites were launched into space.  Currently more than 30 high schools, colleges, and 

universities around the world are developing CubeSats.  For more information on the CubeSat 

program, see http://cubesat.calpoly.edu/index.html. 

2.2 The History of ION 

The CubeSat Program at the University of Illinois dates back to August of 2001.  The 

program was initiated under the guidance of Professor Gary Swenson in the Department of 

Electrical and Computer Engineering and Professor Victoria Coverstone in the Department of 

Aerospace Engineering.  CubeSat is a fundamental component of ITSI:  the Illinois Tiny Satellite 

Initiative.  Since its conception, numerous students from various disciplines have contributed to 

the design and implementation of ION.  The California Polytechnic State University has been in 

negotiation with the Russian launch provider, Kosmotras, to launch a number of CubeSat 

satellites from various universities.  Kosmotras converts old Soviet SS-18 missiles into satellite 

launching vehicles.  This is known as the Dnepr space launch system.  ION is currently slated to 

be included with a number of CubeSat satellites to go into orbit in the fall of 2004.  The 

projected orbit is a 700-km circular orbit at 98° inclination with a 9:30-10:30 or 22:00-23:00 

local launch time.  For more information on Kosmotras and the Dnepr space launch system, see 

http://www.kosmotras.ru/. 

 

2.3 ION’s Dimensions 

ION is a CubeSat class satellite, which means it must abide by the requirements set down 

by Cal-Poly and Stanford.  These requirements govern the physical dimensions, mass, and 

materials from which ION may be built.  However, one characteristic of ION that distinguishes it 

from most CubeSats is that it is a two-cube design.  In other words, the satellite consists of two 
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10-cm cubes stacked on top of each other.  Thus, the physical dimensions of ION are 10 cm x 10 

cm x 21.5 cm.  It has a mass constraint of 2 kg.   

2.4 ION’s Payload 

ION has several important components in its mission.  It will be flying two sensors as 

payload.  The first is a H7155 photomultiplier tube (PMT) that was manufactured by 

Hamamatsu.  This is a sensor that is used to measure an atmospheric emission known as airglow 

at altitudes of approximately 90 km.  This data will be collected and processed under the 

direction of Dr. Gary Swenson at the University of Illinois.  For the PMT to acquire its data, 

there is a pointing requirement that the sensor should be nadir (Earth) pointing with a deviation 

angle of less than 10°. The pitch rate must be under 0.12°/s so that the angle deviation between 

scans is negligible.  The sampling rate is a function of the altitude, but it will never be more than 

7 s per scan.  Thus, only small changes in pitch can be made every 7 s.  These are the most 

stringent requirements for the attitude control system.  The secondary sensor is a complementary 

metal-oxide semiconductor (CMOS) camera, the pb330 from Photobit.  It will be used to take 

snapshots of the Earth.     

Besides the sensor payloads, ION will also be space-qualifying hardware for a number of 

its primary components.  ION’s microprocessor is known as SID, the Small Integrated Data-

logger.  This is a single board computer designed around the Hitachi 32-bit RISC SH7045F 

microcontroller. SID is credit card sized and runs at 15 MHz on less than 0.5 W.   SID is a 

prototype designed by Tether Applications.  The other hardware being space-qualified by ION is 

an electric propulsion system.  This is a custom system that was designed and built by Alameda 

Applied Sciences Corporation in cooperation with students at the University of Illinois.  The 

propulsion system consists of a power-processing unit that controls four vacuum arc micro-
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thrusters.  These thrusters are small, pulsed electric thrusters, designed for attitude control of 

small satellites.  It is important to note that these thrusters represent a new technology with 

exciting possibilities.  However, since this technology is untested, the attitude control system 

developed in this paper does not make use of the propulsion system as an actuation device.  Only 

the torque coils are used for attitude control.  See TABLE 1 for a table of some of ION’s 

important parameters relating to the attitude control system.  For more information regarding 

ION, see http://courses.ece.uiuc.edu/cubesat. 

 

TABLE 1:  ION’s Numerical Parameters 

Orbit Properties 
Altitude 700km 
Eccentricity ≈0 
Inclination 98° 

Satellite Dimensions 
X 10 cm 
Y 10 cm 
Z    21.5 cm 

Deviation From Centroid to Center of Mass 
X 5.498 mm 
Y -1.079 mm 
Z    4.760 mm 

Moments of Inertia 
Ix 7.380 g-m2 
Iy 7.475 g-m2 

Iz    2.155 g-m2 

Ixy -0.03156 g-m2 
Ixz -0.09591 g-m2 
Iyz -0.03867 g-m2 
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3 THE ATTITUDE CONTROL HARDWARE  

There are three main hardware components that are used in ION’s attitude control 

implementation:  the magnetometer, the torque coils, and the flight computer.  The first two are 

concerned with magnetic fields.  The first component, the magnetometer, is used to measure the 

Earth’s magnetic field.  The second component, the torque coils, is the actuator that changes the 

orientation of the satellite in space.  This is done by generating a magnetic field, which in turn 

interacts with the naturally occurring geomagnetic field of the Earth.  The final hardware 

component is the flight computer upon which the algorithms and data processing are carried out.     

3.1 Torque Coils  

It is a well-known fact that running a current through a wire loop will generate a 

magnetic field.  It is also well known that magnetic fields interact to generate torque.  These are 

the governing principles behind all modern motors.  ION utilizes these principles in its attitude 

control system through the use of torque coils or magnetorquers.  These torque coils consist of 

wire wound inside the satellite to form a large coil, as seen in Figure 1.  This coil is used to 

generate a magnetic field, which interacts with the geomagnetic field to change the orientation of 

the satellite.  For details on the specifics of the torque coils and their required circuitry, see 

APPENDIX A.  The development of the remainder of this section can be found in any standard 

text on electromagnetism, such as [2].   

3.1.1 Overview of torque coil theory 

A current flowing through the torque coils generates a magnetic dipole moment, 

according to the following equation:   
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 nNIAam =    (1) 

 

Figure 1:  Torque Coil 

The parameter A is the cross sectional area of the coil, N is the number of turns of the 

coil, and I is the current running through the coil.  The direction of the dipole moment is normal 

to the coil, and is determined by the right-hand rule according to the direction the current is 

moving in the coil.  This is illustrated in Figure 2.  The magnetic field at the geometric center of 

this rectangle, bm, with length a and width b is given by the following equation: 

 nm A
baNI

ab
π

µ )(2 22
0 +

=    (2) 

The parameter µ0 is known as the permeability of free space, which is 4π x 10-7H/m.  The 

interaction of this magnetic dipole moment with the Earth’s magnetic field generates a torque, tm, 

according to the following equation: 
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The parameter m is as defined in Equation (1), and be is the earth’s magnetic field at a 

particular location.   

For an intuitive understanding behind generating magnetic torques, see Figure 2.  As can 

be seen in this figure, the torque generated in this magnetic field tends to align the magnetic 

dipole moment with the geomagnetic field.  Note that there is no generated torque if the 

magnetic dipole moment is already aligned with the geomagnetic field. 

 

 

 

 

 

Figure 2:  Intuitive Torque Coil Operation  

3.1.2 Sizing the torque coils 

According to Equations (1) and (3), the generated torque is proportional to the area of the 

coil.  So, ideally, the coils should be as large as possible.  However, the physical dimensions of 

the satellite and the locations of the various components within the satellite limit the area of the 

coils.  Nonetheless, the coils are sized as large as possible to meet these constraints.  The other 

constraint limiting the number of turns of the coil is that ION has only a finite amount of power 

available for attitude control.  After analysis of the spacecraft’s power budget, it was decided that  

0.1 W would be the maximum power available for each of the torque coils.  As such, the coils 

may have as many turns as necessary as long as their total power dissipation is less than 0.1 W. 
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The total power dissipated by the coil is given according to the well-known equation 

 
total

bus

R
V

P
2

=  (4) 

The resistance Rtotal is the total resistance of the coil and the H-bridge, which is found by 

 coilbridgetotal RRR +=  (5) 

The resistance Rbridge is the resistance of the H-bridge.  The resistance of the coil is given by the 

formula 

 
S
lRcoil σ

=  (6) 

The parameter σ is the conductivity of the wire, l is the length of the wire, and S is the wire’s 

cross-sectional area.  Finally, the length of the coil is related to the dimensions of the coil 

according to simple geometry: 

 )(2 baNl +=  (7) 

From these equations, and the given power constraint of 0.1W for each of the torque 

coils, it is possible to determine the number of turns in each of the coils.  Combining Equations 

(4) through (7), we find the total number of turns as 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
= bridge

bus R
P

V
ba

SN
2

)(2
σ  (8)  

3.2 The Magnetometer 

The second major component of the attitude control system is the magnetometer.  This is 

a sensor that measures magnetic fields.  ION employs its magnetometer to sample the 
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geomagnetic field.  These field measurements are then used by the attitude control system to 

obtain estimates of ION’s orientation in space.  Although it may be obvious, it is essential that 

the magnetometer should not be sampled while operating the torque coils.  Otherwise, the 

magnetic field created by the torque coils will skew the measurement of the geomagnetic field.  

The particular magnetometer flown aboard ION is the HMC2003, which is manufactured by 

Honeywell.  See Figure 3 for a picture of this magnetometer.  As can be seen, this model is a 

solid-state circuit mounted on a 20-pin hybrid DIP package.  This magnetometer is a three-axis 

magnetic sensor, which is capable of independently measuring three orthogonal components of 

the magnetic field using magnetoresistive transducers.  This sensor can detect fields up to plus or 

minus 2 gauss, with an accuracy of 40 µgauss.  Detailed information regarding the 

implementation of this magnetometer may be found in APPENDIX B.   

 

Figure 3:  HMC2003 Magnetometer 

3.3 The Flight Computer 

The flight computer is a commercial, off-the-shelf part from Tether Applications (TAI), 

Chula Vista, CA.  They have developed the Small Integrated Data-logger, known as SID, with an 

eye towards its use aboard small satellites.  See Figure 4 for a photograph of SID.  ION will be 
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the first satellite to fly SID into space, and will be providing TAI with feedback on SID’s 

performance and the development experience.  

 

Figure 4:  Small Integrated Data Logger (SID) 

SID is based on the Hitachi SH7045 microprocessor, a member of the SH-2 processor 

family.  SID is only 10 x 55 x 85 mm and weighs a meager 35 grams. The microprocessor is 

combined with many peripherals on a very small, heavily integrated board.  In addition to its 256 

kB of onboard FLASH and 4 kB of onboard RAM, SID has 1024 kB external RAM, and an 8 

MB serial FLASH.  Because SID has been custom designed with space applications in mind, it 

has a variety of extra features included in its computational ability including high-power 

switches, an over current detector, clocks, temperature sensors, 22 analog inputs, 4 TTL serial 

interfaces, 24 general purpose digital I/O pins available and 28 output only pins available.  As 

can be seen, SID is a robust computing system with many extra features for increased 

computational power and efficiency.  For more details on SID, see 

http://www.ntsb.gov/events/symp_rec/proceedings/authors/carroll.pdf. 
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4 ATTITUDE CONTROL BASICS 

Before the attitude control system can utilize any of the hardware to control the satellite, 

it is necessary to introduce a number of standard definitions necessary to solve attitude control 

problems.  This section will lay the groundwork upon which the rest of the thesis will be built.  

First, the fundamental coordinate systems will be defined.  Next, the intuitive concept of attitude 

will be formalized.  Several different attitude schemes will be introduced.  The concept of 

angular velocity will also be introduced.  The fundamental equations governing the satellite 

dynamics will be presented.  Finally, the necessary disturbance torques which influence satellite 

motion in the space environment will be introduced and mathematical models will be presented.     

4.1 Coordinate Systems 

A coordinate system, or reference frame, is simply a set of three mutually orthogonal 

basis vectors defining a grid in three-dimensional space.  Basis vectors for the coordinate system 

A are denoted as xA, yA, and zA, respectively.  All coordinate systems which will be introduced 

are both right handed and orthonormal.  Thus, the following equations hold: 

 { }zyxwv
wv
wv

wv AA ,,,
,0
,1

∈∀
⎭
⎬
⎫

⎩
⎨
⎧

≠
=

=•  (9) 

 AAA zyx =×  (10) 

 AAA xzy =×  (11) 

 AAA yxz =×  (12) 

In this thesis, the bases for various coordinate systems are defined according to various 

terrestrial or celestial objects.  Some problems are more conveniently addressed and solved in 
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different coordinate systems.  Thus, the following group of coordinate systems will be 

introduced to address these problems more conveniently.   

4.1.1 The geocentric celestial inertial coordinate system 

The first coordinate system which will be introduced is the Geocentric Celestial Inertial 

Coordinate System, which is denoted by the letter I.  This system is located at the Earth’s center 

of mass.  In this system, xI is taken as the unit vector in the direction of the first point in Aries, 

which incidentally is the line common to both the earth’s equatorial plane and ecliptic planes.  

The vector zI is typically chosen to be the line passing through the Earth’s center and the North 

Pole.  The vector yI is chosen to complete the right-handed system.  It is important to note that 

this system does not take into account the rotation of the earth.  Rather, the Earth rotates about 

the vector zI.  Also, axes are defined relative to the earth’s position at the chosen epoch time.  

The epoch time that is used for ION’s attitude control system is J2000, which means t0 is January 

1st, 2000 at 12:00:00 noon.   See  Figure 5 for a picture of the Geocentric Celestial Inertial 

Coordinate System.   

4.1.2 The geocentric fixed coordinate system 

The second coordinate system necessary for attitude control problems is known as the 

Geocentric Fixed coordinate system, which is denoted by the letter E.  This system is shown in 

Figure 6.  Like the Geocentric Inertial Coordinate System, this reference frame has its origin at 

the Earth’s center of mass.  But, this coordinate system is fixed to the Earth, and this rotates in 

time.  The vector xE is defined as the unit vector in the equatorial plane from the Earth’s center to 

the Prime Meridian.  The vector zE is the unit vector from the center of the Earth to the 
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geographic North Pole.  And, yE is defined to make the system a right-handed system.  As such, 

it points from the Earth’s center to the 90th longitude line.   

 

 

 

 

 

 

 

 

 

Figure 5:  Geocentric Celestial Inertial Coordinate System 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Geocentric Fixed Coordinate System 
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4.1.3 The satellite fixed body coordinate system 

The third important coordinate system is Satellite Fixed Body coordinate system, which 

is denoted with the letter B.  As its name suggests, this reference frame is defined in relation to 

the satellite itself.  The reference frame is geographically located at the center of mass of the 

satellite as found in Figure 7.  The unit vectors that comprise the axis for this system are denoted 

xB, yB, and zB, respectively.  The first two are located in the plane parallel to the small face of the 

satellite.  The final vector, zB, is located parallel to the long faces of the satellite.   

 

Figure 7:  The Fixed Body Coordinate System 
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4.1.4 The satellite orbital reference coordinate system 

The final coordinate system is the Satellite Orbital Reference coordinate system, which is 

denoted by the letter R.  It is located at the satellite’s center of mass.  This coordinate system 

defines the nominal orientation of the satellite.  Thus, the vector zR is the unit vector which 

points from the satellite’s center of mass to the Earth’s center of mass.  The vector xR is defined 

as the unit vector in the direction of the component of the velocity vector that is orthogonal to the 

radius vector.  This vector is in the orbital plane, and is in the same general direction as the 

velocity vector.  However, it is not exactly in the direction of the velocity vector, since the radius 

is not orthogonal to the radius vector, except at isolated points in the orbit.  Finally, yR is then 

defined as the cross product of zR and xR.  See Figure 8 for a graphical representation of the 

satellite reference frame coordinate system.  Note that in this figure, the vector yR is pointing into 

the page.   

 

 

 

 

 

 

 

 

 

Figure 8:  Satellite Reference Frame Coordinate System 

xR

zR 

⊕ yR 
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As the satellite changes its position within an orbit, the orientation of the satellite 

reference frame changes also.  It is important to note that the actual orientation of the satellite has 

no bearing on the reference frame coordinate system.  If the satellite were to change its attitude at 

a particular place in the orbit, the Satellite Fixed Body coordinate system would not change.  

Also, it is important to note that if the satellite achieves its desired orientation within the orbital 

plane, both the fixed body and reference coordinate systems will be aligned with each other.  

That is to say, xR ≈ xB, yR ≈ yB, and zR ≈ zB.   

4.2 Attitude Systems  

The previous sections defined coordinate systems in three-dimensional space.  The next 

sections are concerned with the relationships between coordinate systems.  Obtaining different 

systemic ways of describing these relationships is a means of formalizing the intuitive concept of 

attitude, or orientation.  In other words, the basic problem of describing attitude is to specify the 

orientation of the one coordinate system in terms of another coordinate system.   

Clearly enough, if one of the coordinate systems which is being specified is the Satellite 

Fixed Body coordinate system, then the attitude which is specified is the attitude of the satellite.  

In some contexts, it is desirable to know how the satellite’s fixed body coordinate system is 

oriented with respect to the inertial coordinate system.  In other instances, it is important to know 

the satellite’s attitude with respect to the fixed body coordinate system.  However, it is in general 

possible to relate any two coordinate systems to each other. As such, the theory will be 

developed to relate any arbitrary right-hand coordinate systems C and D, with basis vectors xC, 

yC, and zC; and xD, yD, and zD.  All of the results may be applied to any arbitrary coordinate 

system as necessary.   
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Describing attitude of coordinate systems relative to each other is not intuitively obvious.  

Therefore, many different schemes have been developed to try to solve this problem.  These 

schemes trade off intuition with ease of implementation.  Three of the more popular schemes are 

described below.  Four good texts describing these and other attitude parameterizations are [1], 

[3], [4], and [5]. 

4.2.1 The attitude or rotation matrix 

Since all of the basis vectors are unit vectors in space, it is possible to write each as a 

linear combination of the vectors of the other coordinate system.  For example, xC may be 

written as 
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Likewise, it is possible to write similar equations for yC and zC.  Grouping these three 

equations together, it is possible to obtain the following matrix equation: 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

D

D

D
DC

D

D

D

C

C

C

z
y
x

A
z
y
x

z
y
x

/

zyx

zyx

zyx

zzz
yyy
xxx

 (14) 

The matrix AC/D is typically known as the attitude, or direct cosine matrix.  The nine 

elements of AC/D define the orientation of coordinate system C with respect to coordinate system 

D.  However, these nine elements are a redundant description of the attitude because each of the 

body vectors is orthonormal, as specified in Equation (9).  Therefore, there are six possible 

constraint equations on the elements of the direct cosine matrix, which are obtained from the 

various permutations of Equation (9).  As such, there are three degrees of freedom necessary to 
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parameterize the attitude of a satellite.  This is an important fact which will be used in the 

attitude estimation algorithms later on.  Grouping all six possible combinations of these 

constraint equations together yields the important result that AC/D is a unitary rotation matrix.  In 

other words: 

 ( ) IAA DCDC =
T//  (15) 

Thus, the rotation matrix has its transpose as merely its inverse, which is always guaranteed to 

exist.   

Clearly, any vector may be written as a weighted sum of the basis vectors of either 

coordinate system C or D.  Thus, an arbitrary vector v may be written as 

 [ ] [ ] DC vzyxvzyxv DDDCCC ==  (16) 

Both vC and vD are three-element column vectors.  After substituting Equation (14) into Equation 

(16), the following result is obtained:  

 [ ]( ) [ ] DC
T vzyxvAzyx DDD

DC
DDD =/   (17) 

Thus, it must follow that 

 ( ) C
T

D vAv DC /=  (18) 

But, since AC/D is unitary, when it multiplies both sides, the following result is obtained: 

 DC vAv DC /=  (19) 

Thus, besides a method of quantifying the satellite’s attitude, AC/D can also be interpreted 

as a transformation between coordinate systems.  The matrix AC/D is a mapping from coordinate 

system D to coordinate system C, and (AC/D)T can be interpreted as its adjoint operator.  Note 
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that the coordinate systems C and D were defined arbitrarily.  If they are relabeled oppositely, all 

results still follow.  Thus, the following equation must hold: 

 ( ) CDDC AA // =
T  (20) 

One final property of attitude matrices is that it is possible to obtain a parameterization of 

an attitude of two coordinate systems through an intermediary coordinate system.  In addition to 

coordinate systems C and D, defined above, let E be a coordinate system with basis vectors xE, 

yE, and zE.  Clearly v from Equation (16) may be written as a linear combination of the basis 

vectors of coordinate system E: 

 [ ] Evzyxv EEE=  (21) 

But, following the discussion leading up to Equation (19), it is possible to relate vD to vE and vC 

to vE through attitude matrices as follows: 

 ED vAv ED /=  (22) 

 EC vAv EC /=  (23) 

Substituting Equations (19) and (22) yields the following result: 

 EC vAAv EDDC //=  (24) 

After comparing Equations (23) and (24), the final result regarding attitude matrices is obtained:  

 EDDCEC AAA /// =  (25) 

4.2.2 Quaternions 

As mentioned above, the attitude matrix describes the attitude of the satellite using nine 

parameters, six of which are redundant.  Other methods have been derived to describe the 



 21

orientation between coordinate systems to one another with less redundancy.  One of the most 

useful systems is the method of quaternions, or the Euler Symmetric Parameters.  This system 

uses four parameters to describe the attitude of the satellite.   
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The vector qC/D is a quaternion.  Like AC/D, it describes the attitude of the coordinate 

system C with respect to D.  For rules regarding mathematics of quaternions, see APPENDIX G.  

Since four parameters are used in the quaternion, there is an extra constraint equation: 

 1=DC/q  (27) 

There are a number of analogous relationships between the quaternion and the attitude 

matrix.  First of all, since they are both means to specify attitude, it is only natural that it is 

possible to convert directly between them.  These conversions are given in APPENDIX F.  

Although these parameters lack the physical insight of the direction cosine matrix, they are 

useful because their kinematics equations are simple to integrate numerically and because they 

are more computationally efficient than using the nine parameters of the attitude matrix.   

A second similarity between the quaternion and the attitude matrix is if the quaternion 

qC/D is known, it is easy to find qD/C.  This is found by the following equation: 

 *// DCCD qq =  (28) 

The “*” in (28) is associated with the conjugation operation, as specified by Equation 

(161).  Another important similarity between the quaternion and the attitude matrix is that it is 
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possible to perform conversions by multiplications.  Thus, Equation (25) may be represented in 

quaternion form as follows: 

 DCEDEC /// qqq ⊗=  (29) 

The multiplication “⊗ ” in (29) is a quaternion multiplication.  Note that the order of 

multiplication is reversed from the matrix multiplication associated with the attitude matrices.   

One final similarity between the quaternion and attitude matrix is that a vector rotation 

for a given attitude matrix may be expressed as a quaternion multiplication.  Thus, Equation (19) 

may be equivalently represented as follows: 

 ( ) DCDC v
v // q*q ⊗⎥

⎦

⎤
⎢
⎣

⎡
⊗=

0
D

C  (30) 

4.2.3 Euler angles  

The final system used to represent attitudes is the Euler angles.  The Euler angles are 

three angles; ψ, θ, and φ; which are rotated around intermediate coordinate axes to obtain an 

attitude matrix.  There are twelve possible sets of body-axis rotations.  Thus, there are 12 

possible sets of Euler angles.  The angles used in this development are a “3-2-1” rotation 

sequence.  Thus, the first rotation of angle ψ is made about the z-axis, the second of angle θ 

about the new y-axis, and the final rotation of angle φ about the new x-axis to obtain the new 

coordinate system.   

The Euler angles are not nearly as mathematically elegant as either the attitude matrix or 

the quaternions.  Also, they have a famous singularity point known as “gimble lock” which 

presents problems for representing all attitudes.  However, they do have two advantages.  First of 

all, only three elements are necessary to characterize the attitude.  As such, no constraint 
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equation is necessary.  Also, the Euler angles have an intuitive advantage that when they are used 

to represent the relationship between Satellite Fixed Body coordinate system to the Orbital 

Reference System, and the angles are small, then φ, θ, and ψ approximate the roll, pitch, and yaw 

angles of the satellite.  These angles are represented in Figure 9.   

 
 

 

 

 

 

 

 

Figure 9:  Yaw Pitch and Roll Angles 

4.3 Angular Velocity  

The previous section introduced the concept of attitude as a static relationship between 

coordinate systems.  However, often the orientation of various coordinate systems will change 

with respect to each other.  This is expressed in the concept of angular velocity.  Angular 

velocity describes how quickly one coordinate system rotates around another coordinate system.  

Thus, ωC/D is the notation to describe the angular velocity of the coordinate system C with 

respect to coordinate system D.   

There are a few important properties regarding angular velocity.  Note that if coordinate 

system C rotates with an angular velocity with respect to coordinate system D, then coordinate 
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system D will seem to rotate the opposite direction from the perspective of coordinate system C.   

Thus, the following law holds: 

 CDDC ωω // −=  (31)   

Another of the interesting facts regarding angular velocity is its additive property.  

Angular velocities of various vector frames add according to the following rule: 

 EDDCEC ωωω /// +=  (32) 

Thus, it is possible to obtain an angular velocity in terms of intermediate angular velocities.   

The final important component of angular velocity involves taking derivatives in various 

reference frames.  Rates of change are clearly relative to the perspective from which they are 

computed.  Thus, derivatives of vectors are relative to the coordinate system in which they are 

taken.  To take the derivative of an arbitrary vector v in two coordinate systems C and D, the 

following rule applies: 

 vωvv CD ×+
⎭
⎬
⎫

⎩
⎨
⎧=

⎭
⎬
⎫

⎩
⎨
⎧ /

DC dt
d

dt
d  (33) 

The brackets and subscripts in Equation (33) designate the perspective from which the 

derivatives are evaluated.     

4.4 Angular Momentum 

The concept of angular velocity is closely related to the concept of angular momentum.  

If ION’s Satellite Fixed Body coordinate system has an angular velocity with respect to the 

inertial frame of ωB/I then its angular momentum h is defined as 

 IBωIh /~=  (34) 
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The matrix I~ is the 3 x 3 inertial matrix which is defined as 
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Each of the elements of I~ is defined by the following integrals taken in the Satellite Fixed Body 

coordinate system: 

 ∫ +=
B

x dmzyI )( 22  ∫ +=
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y dmzxI )( 22  ∫ +=
B

z dmyxI )( 22  (36) 

 ∫=
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xy xydmI  ∫=
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Due to the nature of Equations (35) through (37), any real objects with some finite 

density and length in all directions of three-dimensional space will have a nonsingular inertial 

matrix I~ .  Thus, its inverse is guaranteed to exist for real objects. 

4.5 Modeling the Satellite Dynamics 

After introducing these concepts of attitude and angular velocities in the previous two 

sections, it is possible to put these concepts to use to model how a satellite’s orientation changes.  

The satellite’s system dynamics are specified by two vector differential equations.  The first 

equation controls the evolution of the satellite’s angular momentum, and thus the rate of change 

of the angular velocity.  The second equation uses the angular velocity to describe the change of 

the satellite’s attitude.  The fundamentals of satellite dynamics are available in many standard 

texts.  Three useful texts are[1], [3], and [4].   
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4.5.1 Rotational dynamics 

 It is a well-known fact that the derivative of the angular momentum is equal to the total 

applied torque.  Thus, the differential equation taken in the inertial reference frame may be 

written as 

 T
Idt

d th
=

⎭
⎬
⎫

⎩
⎨
⎧  (38) 

The vector h is the angular momentum, and tT is the total applied torque.  Euler’s 

moment equation is obtained by following the derivative rule outlined in Equation (33) to 

Equation (38) as follows:   

 hωth IB ×−=
⎭
⎬
⎫

⎩
⎨
⎧ /

T
Bdt

d  (39) 

This is the dynamics equation, which governs the evolution of the satellite’s angular 

momentum.  Since the inverse of the inertial matrix is guaranteed to exist, it is possible to 

multiply both sides of Equation (34) by the inverse of I and substitute this result into Equation 

(39) to obtain an explicit formula for the evolution of the angular velocity as follows: 

 ( ))~(~ //1
/

IBIB
IB

ωIωtIω
×−=

⎭
⎬
⎫

⎩
⎨
⎧ −

T
Bdt

d  (40) 

4.5.2 Rotational kinematics 

The kinematics equation is used to determine the rate of change of the orientation of the 

satellite as a function of its angular velocity.  Clearly, as covered previously, there are a variety 

of systems available to represent orientation.  Each of these various systems has its own 
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differential equation.  Since the quaternions are the primary attitude representation used by ION, 

this section will only cover the kinematics of this system.   

Let ωB/C be the angular velocity of the spacecraft with respect to an arbitrary reference 

frame C.  Then, the following kinematics equation may be conveniently expressed in terms of 

the quaternion vector as follows: 

 ( ) CBCB
CB

ωΩ //
/

2
1 qq

=
⎭
⎬
⎫

⎩
⎨
⎧

Cdt
d    (41)  

The parameter qB/C is the four-element quaternion vector, which represents the attitude of 

the satellite with respect to coordinate system C, and the matrix Ω(ω) is defined as follows:   
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5 ATTITUDE CONTROL ALGORITHMS  

This section of the thesis builds upon the topics introduced in the previous chapter to 

develop the necessary algorithms to execute the attitude control system.  The first algorithm that 

is introduced is used to determine the position of the satellite in space.  After the position of the 

satellite has been determined, it is possible to calculate the nominal geomagnetic field.  This is 

then compared to the measured magnetic field in an extended Kalman filter to produce an 

estimate of the satellite’s attitude.  Finally, the linear quadratic regulator is used to actuate the 

torque coils and control ION’s attitude.    

5.1 Position Determination 

The information in the following sections outlines position determination.  It is readily 

available in many orbital mechanics textbooks.  In particular, [6] provides a good development 

of the material.  The approach that is taken in these sections assumes the two-body orbital 

motion.  In other words, it is assumed that the satellite’s orbit is completely determined through 

the laws of Newtonian physics, using the mass of the earth and satellite, along with its initial 

position and velocity vectors.  Thus, perturbations in the orbit caused by the earth’s obliqueness, 

atmospheric drag, gravitational effects from other celestial bodies, and other miscellaneous 

effects are completely ignored.  The deviations in the orbit from these effects are quite small 

compared to the contribution of the earth itself.  Thus, the two-body solution provides a 

reasonable first-order approximation, which is useful in designing the attitude control system.  It 

should be noted that if more accurate orbit propagation techniques are necessary, there are many 

commercial products available that can perform orbit propagation to determine the satellites 

position while accounting for some of these other effects.   
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5.1.1 The orbital elements  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  The Three-Dimensional Orbit 

As can be seen in Figure 10, a satellite orbits the earth in an elliptical plane, with the 

earth at one focus of the ellipse.  This ellipse can be conveniently located in three-dimensional 

space using Geocentric Celestial Inertial coordinate system.  It is possible to completely specify 

a satellite’s orbit at any time from a set of six numbers.  There are many valid six number sets 

that contain the necessary orbital information.  For example, the three components of the position 

and velocity vectors in a given reference plane are sufficient to determine the orbit.  However, 

for tasks such as orbit propagation, it is inconvenient to work with this set of numbers.  A more 

convenient set of parameters are the orbital elements.  This set includes five numbers to locate 
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the orbit in three-dimensional space and one number to locate the satellite’s position within the 

orbit.  They are defined as follows:   

a:  The semimajor axis gives the length from the center of the ellipse to the furthest point 

on the ellipse.   

e:  The eccentricity is a number from 0 to 1 which determines the shape of the ellipse.  If 

the eccentricity is 0, the orbit is circular.  For eccentricities near 1, the orbit is nearly hyperbolic 

or parabolic.  In other words, the satellite in this orbit is nearly escaping the central body’s 

attraction and heading into space.     

i:  The inclination is an angle from 0 to π.  It is the angle of the orbit plane compared to 

the fixed equatorial reference plane.  

Ω:  The longitude of the ascending node is an angle that takes values from 0 to 2π.  It is 

the angle from the axis xI to the ascending intersection of the reference and orbital plane. 

ω :  The argument of perigee is an angle taking values from 0 to 2π.  It is the angle from 

the longitude of the ascending node to the perigee, which is the point of the orbit where the 

satellite is closest to the Earth.  

f:  The true anomaly is the angle taking values from 0 to 2π, which measures the angle 

between the perigee and the radius vector from the Earth to the satellite’s current position. 

See Figure 10 for a pictorial representation of the orbital elements.  Note that since the 

first five of the orbital elements determine the orbit’s location in space, they remain fixed in the 

two-body model, while the sixth element determines the satellite’s location within the orbit.  

Also note that conversions can be made between the orbital elements and the Cartesian radius 

and velocity vectors.  These conversions are available in APPENDIX D.   
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5.1.2 Kepler’s second law 

Let Figure 11 represent the circumscribed orbital plane.  If T is the orbital period and ∆t 

is the time it takes the satellite to get from the perigee located at point P, to its current position at 

point C, then Kepler’s Law may be stated as 
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Figure 11:  Circumscribed Two-Dimensional Elliptical Plane 

The following results have been derived (see[6] for example): 

 )sin(FCPsector  of Area 2
1 EeEab −=  (44) 

 abπ= ellipsean  of Area  (45) 

 32 µπ aT =  (46) 

The parameter µ is the gravitational constant that has the value of 398,600 km3/s2 for the Earth, b 

is the semi minor axis of the ellipse, and E is the eccentric anomaly.  The rest of the parameters 
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are either defined in Figure 11 or are included in the orbital elements.  It should be noted that it is 

quite easy to convert between E and f using the following equation: 
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Combining Equations (43) through (46), the following result is obtained: 

 )sin(3 EeEt a −=∆ µ  (48) 

Equation (48) is the key equation that is used for orbit propagation.  This is explained in the 

following section. 

5.1.3 Orbit propagation algorithm 

Due to the nature of Newtonian two-body problem, the satellite always remains in the 

same known orbit.  Thus, once the position and velocity are known at some initial time t0, it is 

possible to propagate the orbit to determine the radius and velocity of the satellite at any desired 

time td by following the method described in Figure 12.  It should be pointed out that step 6 of 

this algorithm is not trivial, as it requires solving a transcendental equation.  Thus, finding an 

analytic solution to this equation is not possible.  However, iterative methods may be used to find 

a solution to within the required level of accuracy.  Thus, using this procedure, it is possible to 

determine a satellite’s exact position at any time.  This completes the first necessary algorithm 

for ION’s attitude control system.       
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Orbit Propagation Algorithm 
Inputs:  Initial time, t0; desired time, td; either the radius and velocity at the initial time, or the 
orbital elements, including f0, the initial true anomaly.  
Step 1.  If the initial known parameters are the position and velocity of the satellite, convert 
them to the orbital elements as outlined in APPENDIX D. 
Step 2.  Convert f0 to E0, the eccentric anomaly at the initial time using Equation (47). 
Step 3.  Find ∆t0 from Equation (48).  This represents the time that has passed since the 
satellite was last at perigee.   
Step 4.  Let 00 ttt p ∆−= .  This is the time when the satellite was last at perigee. 
Step 5.  Let pdd ttt −=∆ .  This is the time that passed from the perigee time to the desired 
time. 
Step 6.  Using ∆td, solve Equation (48) for Ed.  This is the eccentric anomaly at the desired 
time. 
Step 7.  Convert Ed to fd using Equation (47).  This is the true anomaly at the desired time. 
Step 8.  If necessary, convert the orbital elements to the desired position and velocity vectors.  
This may be done using APPENDIX D.   

Figure 12:  Orbit Propagation Algorithm 

5.2 The Geomagnetic Field  

The previous section dealt with determining ION’s location in space.  The second major 

task for the attitude control system is to calculate the nominal geomagnetic field at this location.   

The geomagnetic field is a naturally occurring phenomenon, which has been measured at 

a variety of positions on the Earth’s surface.  For general information regarding the geomagnetic 

field see [7] or [8].  From the various measurements, algorithms have been developed to obtain 

accurate estimates of the geomagnetic field for a given position.  One such algorithm developed 

by the International Association of Geomagnetism and Aeronomy (IAGA) is the International 

Geomagnetic Reference Field (IGRF).  Information is available at 

http://nssdc.gsfc.nasa.gov/space/model/magnetos/igrf.html. 
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5.2.1 Generating the magnetic field 

Since the geomagnetic field is a function of position relative to the earth, it is only natural 

to use the Geocentric Fixed coordinate system to compute it.  It is possible to generate the 

Earth’s magnetic field by writing it as a sum of spherical harmonics, as shown in [9]:     

 ∑∑
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The vector bc is the calculated magnetic field in the Geocentric Fixed coordinate system, 

and bn,m is the spherical harmonic of degree n and order m.  The components of bn,m are found by 

the following equation: 
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The parameters gn,m and hn,m are the Gauss coefficients of degree n and order m, as 

published by the IGRF.  The parameter a is the mean radius of the Earth (6371 km) as defined by 

the IGRF.  The parameter r is the magnitude of r, the desired location at which to find the 

magnetic field in the Geocentric Fixed coordinate system.  The unit vector r̂ is in the direction of 

r.  The parameter u is the third component of r̂  which may be found as follows: 

 Eu zr •= ˆ  (51) 

The remaining terms in (50) may be determined recursively through the following 

recursions: 
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Kn,m are known as the Schmitt coefficients, while An,m are derived Legendre polynomials.  

Sm and Cm are related to the Schmitt coefficients, but are separated as a means of simplifying the 

recursions.   

It is important to note that the Schmitt coefficients are independent of the desired 

position.  Thus, if the magnetic field is to be calculated for a number of points, the Schmitt 

coefficients need only be calculated once, and may be reused for each subsequent calculation.  

However, the rest of the parameters are location dependent, and must be recalculated for each 

desired location.  The interested reader may see [1] or [9] for a more detailed explanation of the 

development of Equations (50) through (57).   
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5.2.2 Magnetic field algorithm 

Although the true value of bc is obtained by an infinite summation, good results may be 

found by merely truncating this infinite sum, as all the terms of high degree and order rapidly 

approach zero.  Tests have shown that good results may be obtained using order 10 for both m 

and n.  Using the above equations, it is possible to obtain an algorithm to determine the magnetic 

field in relation to the GCI coordinate system.  The algorithm is depicted in Figure 13.   

Magnetic Field Algorithm 
Inputs:  The desired position, r.    
Step 1.  If r is not in the Geocentric Fixed coordinate system, convert it as outlined in 
APPENDIX E. 
Step 2.  Use Equations(50) through (57) to calculate the magnetic field, bc as a function of this 
position vector. 
Step 3.  If necessary, convert bc from the Geocentric Fixed coordinate system to the desired 
coordinate system as outlined in APPENDIX E.   

Figure 13:  The Magnetic Field Algorithm 

5.3 Attitude Estimation 

After calculation of the geomagnetic field, it can be used to estimate the attitude of the 

spacecraft.  It is important to note that it is not possible to use a “snapshot” methodology to 

obtain an estimate of the attitude directly by comparing the calculated and measured vectors at 

each sample time independent of previous information.  The reason this is true ultimately has to 

do with the number of degrees of freedom necessary to parameterize the attitude of the satellite.  

As stated in the previous chapter, there are three degrees of freedom necessary to parameterize 

the attitude.  A single reading of the magnetometer provides three pieces of information 

regarding magnetic field (its direction in each of the three directions of the body frame of the 

satellite).  However, it provides only two independent pieces of information regarding the 

satellite’s attitude.  This is because the generated and measured magnetic field vectors have the 
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same magnitude.  Thus, knowing the first two elements of the measured vector also gives the 

third element (assuming there is no noise in the measurement).  Thus, only two degrees are 

specified at each reading.   

This may be understood intuitively by looking at the following example.  Assume that the 

earth’s magnetic field at a particular location is simply xR.  Also, assume the magnetometer takes 

a reading of [1;0;0] for the local magnetic field strength.  This does not imply the body axis is in 

the correct orientation relative to the reference axis.  It only implies the x axis is correctly 

aligned.  However, the satellite may have the incorrect rotation about this axis while still 

providing the same reading.  See Figure 14 for a picture of this example. 

 

 

 

 

 

Figure 14:  Attitude Ambiguity 

To avoid this ambiguity, historically satellites have made comparisons of two reference 

vectors in attitude estimation.  For example, satellites have employed a sun, moon, or horizon 

sensor to obtain another vector measurement.  The problem of obtaining an attitude estimate 

from two vector measurements is known as Wahba’s Problem [10].  As long as these two 

measurements are not collinear (which is almost always the case except for isolated instances), it 

is possible to obtain an attitude estimate at each measurement reading. 
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5.3.1 Extended Kalman filter 

However, ION incorporates only magnetometer readings to obtain its attitude estimates.  

To overcome the ambiguities stated above, it has been shown that it is possible to obtain correct 

attitude estimates using only magnetometer data by using an extended Kalman filter [11].  For a 

good introduction to extended Kalman filtering and state estimation, see [12].  Reference [13] is 

a seminal work relating extended Kalman filtering to the problem of spacecraft attitude 

estimation.    

The extended Kalman filter assumes a system of the following form: 

 uuxfx += ),,( td&  (58) 

The vector x is the unknown state which is to be estimated, ud is the control input, and u is 

assumed to be a white-noise process with covariance matrix Rk.  In general Equation (58) is a 

nonlinear, continuous time differential equation.  Along with the state dynamics, there is an 

output process that is observed of the following form: 

 vxhz += ),( t  (59) 

The vector z is the observed output, while v is a white noise process with covariance 

matrix Qk.  The processes v and u are assumed to be uncorrelated.  It is assumed that both f and 

h are known, nonlinear functions.  Thus, it is possible to linearize both of these equations as 

follows.  Let the true state vector be equal to the estimated vector x̂  plus a perturbation ∆x: 

 xxx ∆+= ˆ  (60) 

Then, the equation is linearized about the estimated trajectory to obtain the following 

continuous time following linear equations: 
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 uxuFx +∆=∆ ),( dt&  (61) 

 vxHxhz +∆=− )(),ˆ( tt  (62) 

The matrices F and H are found by taking the gradient of f and h and evaluating them along the 

estimated state: 

  ( )
xxx uxfuF ˆ),,(,

=
∇= tt dd  (63) 

 ( )
xxx xhH ˆ),(

=
∇= tt  (64) 

To implement the extended Kalman filter, z is sampled periodically every ∆T s.  At some 

time k, a measurement of z is taken, which is referred to as zk.  Also, assume there is an a priori 

estimate of x immediately prior to k, −
kx̂ .  From this estimate, it is possible to obtain an estimate 

of the output according to the following equation: 

 ),ˆ(ˆ tkk
−− = xhz  (65) 

The new information gained from this estimate is known as the innovations process or 

measurement residual.  It is simply: 

 −−= kkk zzν ˆ  (66) 

From this innovations process, it is possible to obtain an update for the best estimate at time k, 

kx̂ , by the following equation: 

 −+∆= kkk xxx ˆˆˆ  (67) 

The perturbation ∆ x̂  is found by the equation 

 kkk νKx =∆ˆ  (68) 
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The matrix K is known as the Kalman gain.  It may be computed according to the following 

formula: 

 1)( −−− += k
T
kkk

T
kkk RHPHHPK  (69) 

The matrix Pk turns out to be the error covariance matrix, which may be computed from the 

following equation: 

 ( )( )[ ] kk
T
kkk

T
kkkkk E QφφPφxxxxP +=−−= −−−

+ ˆˆ1  (70) 

 ( )( )[ ] T
kkk

T
kkkkk

T
kkkkk E KRKHKIPHKIxxxxP +−−=−−= − )()(ˆˆ  (71) 

The matrix ϕk is the state transition matrix.  If F(k) is assumed constant over the sampling 

period,  ϕk is simply found by performing the following matrix exponentiation: 

 Tk
k e ∆= )(Fφ  (72) 

To complete the state estimation it is necessary to project the state vector ahead to the next time 

step.  This is done through the following equation:     

 ∫
+−

+ +=
1

1 ),,ˆ(ˆˆ
k

k dkkk dttuxfxx  (73) 

5.3.2 ION’s attitude estimation via the extended Kalman filter 

The extended Kalman filter ION employs is similar to the presentation given in the 

previous section, although, there are a few changes based on those which were introduced in 

references [11] and [13].  The goal of this filter is to estimate the ION’s attitude and angular 

velocity.  Also, a disturbance torque is estimated to increase the robustness of the filter.  Thus, 

the state is the following 10 element vector: 
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The four-element quaternion qB/I represents the attitude of the satellite with respect to the 

inertial reference frame.  The vector ωB/I is the angular velocity of the body frame with respect to 

the reference frame.  The vector td is the disturbance torque.   All vectors are in the fixed body 

reference frame.   

Unfortunately, there is a problem with this choice for the state vector.  Since the 

quaternion consists of three independent parameters and one dependent parameter, there is a 

redundant parameter in the state.  One alternative is to define a small quaternion ∆q by the 

following quaternion multiplication: 

 B/IB/I q
qq ˆ

1
⊗⎥

⎦

⎤
⎢
⎣

⎡∆
=  (75) 

Using this definition, an alternative choice for the state vector is 
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The equations driving ION’s extended Kalman filter are based upon the nine-element 

implementation where only the small quaternions are estimated.  Yet, all 10 elements are stored 

for booking keeping purposes.  This is done through a creative implementation of the Kalman 

gain in the measurement update equations.  Equation (68) is implemented normally as 

 kk
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k νK
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However, instead of using Equation (67) to obtain the new estimate, the following two equations 

are used: 
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But the quaternion update makes use of a quaternion multiplication:   
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Then the new 10-element state estimate is simply 
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The observation vector is simply the three-dimensional magnetic field vector that is taken 

by the magnetometer, as outlined in APPENDIX B.  This vector is in the satellite’s fixed body 

system.  Thus: 

 mbz =  (81) 

The control input is the torque produced by the magnetorquers, as outlined in Equation (3) and 

APPENDIX A.    

 md tu =  (82) 

The state vector evolves according to Equations (40) and (41).  Nevertheless, it is restated 

below for consistency:   



 43

 
( )

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×−+=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= −−

0
ωIIωttI

ωΩ

t
ωuxf IBIB

d

IBIB

IB

IB

)~(~~),,( /1/1

//
2
1

/

/

m

d

d t
qq

&

&

&

 (83) 

The measurement equation h is merely the magnetic field in the fixed body coordinate system 

bm.  It is given as 

 rmt bAbxh RB /),( ==  (84) 

The vector br is the calculated magnetic field vector in the orbital reference frame.  Note that 

AB/R is a function of the quaternion qB/R, so h is clearly a function of x, even though this 

relationship is not explicitly stated in (84).     

One of the major changes between the standard and ION’s extended Kalman filter is in 

the definition of the innovation process.  ION’s innovation process is as recommended in [11].  

Instead of defining this process as in (66), the following definition is used: 

 
−

−×
=

kk

kk
k zz

zz
ν

ˆ
 (85) 

This nonstandard innovations equation is chosen because it effectively eliminates differences in 

length between the calculated and measured magnetic field while concentrating on the 

differences in their directions.  This is strongly desired, since the attitude of the satellite is not 

dependent upon the length of these vectors at all.  If the state equation were truly linear, then 

there would be no advantage to using the nonstandard innovations process over the typical one.  

However, the atypical one performs better for estimating the nonlinear system. 

The linearized state and observation equations are derived in APPENDIX I.  Only the 

results are presented below.  The linearized matrix for the state dynamics is 
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The matrix Γ is as restated below: 
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The matrix X is the skew symmetric matrix associated with the cross product: 
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The linear output equation for the matrix H is 

 ( )
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The remainder of the equations necessary to implement the Kalman filter are the state and 

measurement time update, the Kalman gain, and the time and measurement covariance matrices.  

These are identical to the standard equations for the extended Kalman filter.   

5.4 Convergence Issues   

The extended Kalman filter has a number of issues regarding its convergence.  First of 

all, it is hard to obtain an accurate estimate of the state and measurement noise covariance 

matrices.  Also, the initial conditions on the state and covariance of the state are crucial factors in 

obtaining convergence.  For the standard Kalman filter, these conditions are not as critical. 
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However the nonlinearities associated with the extended Kalman filter cause severe problems 

with the convergence if the parameters differ greatly from the true values.  

5.5 Extended Kalman Filter Algorithm 

The extended Kalman filtering algorithm is given in Figure 15:  

Extended Kalman Filtering Attitude Estimation 
Algorithm 
Inputs:  initial conditions −

0x̂  and P0
-.  

Step 1.  Find kb̂  according to Equation (84).   
Step 2.  Make the measurement at time k.  This is bk  
Step 3.  Make the measurement updates according to steps 3a through 3f. 
Step 3a.  Find kν  according to Equation (85). 
Step 3b.  Find Hk according to Equation (89). 
Step 3c.  Find Kk according to Equation (69). 
Step 3d. Compute x~∆  according to Equation (77). 
Step 3d.  Compute kx̂  according to Equations (78) through (80). 
Step 3e.  Compute Pk according to Equation (71).   
Step 3f.  Compute Fk according to Equation (86).  
Step 4.  Make the time update for the next time step according to steps 4a and 4b. 
Step 4a.  Predict −

+1ˆ kx  according to Equation (73). 
Step 4b.  Compute Pk+1

- according to Equation (70).   
Step5.  Set k = to k+1.  Wait for the next sampling time.  Then, go to step 2. 

Figure 15:  Attitude Estimation Algorithm 

5.6 The Linear Quadratic Regulator Control Law 

Magnetorquers have been used to control spacecraft in a variety of ways.  Traditionally, 

magnetorquers have been used in conjunction with reaction-wheel based systems.  The reaction 

wheels are used for precision attitude control, while the torquers are used to “dump” excess 

momentum when the wheel rates get too high.  Recently, various control laws have been 

developed to implement three-axis attitude control without the use of reaction wheels.  The first 

controller was a projection based attitude control system.  More sophisticated techniques such as 
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linear quadratic regulators, fuzzy control, and sliding mode control systems have been simulated.  

Thus, there are a variety of control laws available to the designer to implement magnetorquers.     

Magnetic control is not a trivial problem.  This is because, as given in Equation (3), the 

control torque is simply the cross product of the magnetorquers’ magnetic moment and the 

geomagnetic field.  Thus, the control torque is orthogonal to both of these vectors.  Thus, it is 

never possible to generate any control torque in the direction of the geomagnetic field.  This 

results in an uncontrollable subspace.  Luckily enough, this subspace is time varying, due to the 

time varying nature of the geomagnetic field as the satellite changes its orbit.  Thus, the satellite 

is controllable for highly inclined orbits. 

ION’s attitude control system will utilize an asymptotic quasi periodic linear quadratic 

regulator.  This is similar to the control law proposed in [14].  This section will proceed with 

discussion of some of the theory associated with the linear quadratic regulator.  It will then 

proceed to describe the actual design necessary for ION’s control law.   

5.6.1 Linear quadratic regulator theory 

The linear quadratic control problem is an optimal control problem.  It is covered in most 

modern control texts, such as [15].  In this problem, it is assumed that there is a system in which 

the state dynamics are constant, but the input dynamics vary with time: 

 ( )uBAxx t+=& , given x(t0) (90) 

For this problem, the following cost function is assigned: 

 ( ) ( ) ( )fT
T

f

t

t

TT ttdf xPxRuuQxxJ 2
1

2
1

0

++= ∫ τ , given ( ) 00 xx =t  (91) 
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The matrix Q may be thought of as a penalty on the state vector to discourage the state from 

deviating too large, R as a matrix to penalize using too much control, and PT as a penalty on the 

final state.  All of these are constant matrices.  From the point of view of the designer, unless 

these matrices have some a priori designation, they may be viewed as a means of changing the 

characteristics of the system dynamics.  Thus, these matrices provide a quantitative way of 

trading off state deviation with control energy.  All of Q, R, and PT are assumed to be positive 

definite.   

The goal of the linear quadratic regulator is to find the optimal control to minimize the 

cost function given these various matrices and an initial state condition.  It is a well-known result 

that the optimal solution to this problem is a full state feedback controller of the following form: 

 ( ) ( )xPBRFxu tt T1* −−==  (92) 

The matrix P(t) is found by the following differential equation: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttt TT PBRBPPAAPQP 1−−++=& , given ( ) Tft PP =  (93) 

In principle, this equation may be evaluated in closed form or analytically, to find the time 

varying matrix P(t), which in turn specifies u*.   

5.6.1.1 Asymptotic periodic linear quadratic regulator  

A special case of the quadratic linear regulator is where the matrix B(t) is periodic.  In 

this case, for some value of T and all t,  

 ( ) ( )Ttt += BB  (94) 

In this case, if PT is properly chosen, it can be shown that the feedback gain matrix is also 

periodic in T.  This periodicity in the feedback matrix can be used to show that, in the case of 
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some very general conditions on the penalty matrix Q, P(t) approaches a steady state matrix PSS 

as the minimum eigenvalue of R approaches infinity.  Thus, for large values of R, it can be 

expected that this PSS matrix may be used as a reasonable approximation for P(t) for all values of 

t.  In this case, the optimal control law becomes 

 ( ) xPBRFxu SS
Tt1* −−=  (95) 

To find PSS, note that the following long average over one period can be made: 

 ( ) ( ) ( ) ( ) τττ d
T

tt
T TT ∫ −− =≈
0

11 1 BRBCBRB  (96) 

These approximations greatly simplify the implementation for the linear quadratic 

regulator.  Inserting this approximation into the differential equation found in Equation (93), it is 

possible to solve the following algebraic Riccati equation: 

 SSSSSS
T

SS CPPPAAPQ0 −++=   (97)  

5.6.2 ION’s asymptotic periodic linear quadratic regulator design  

To apply the linear quadratic regulator to ION’s attitude control system, the state vector 

consists of the attitude and angular velocity of the fixed body coordinate system with respect to 

the orbital reference frame.  Only three elements are necessary to represent the attitude as the 

fourth element is redundant.  Thus, the six-element state is as follows: 

 ⎥
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⎡
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ω
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lqr  (98) 

The subscript lqr is used to make a distinction between the state vector used by the linear 

quadratic regulator and the state vector used by the extended Kalman filter.  The first three 
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elements of the state are the three element attitude vector.  The final three elements are the 

angular velocity vectors.  The input is the magnetic moment generated by the magnetorquers, as 

outlined in APPENDIX A and Equation (3).  It is as follows: 

 mu =  (99) 

The system dynamics are clearly nonlinear.  Furthermore, the state dynamics are time 

varying.  Thus, to apply the linear quadratic regulator theory, it is first necessary to linearize the 

system about a nominal trajectory.  This derivation is available in APPENDIX I.  Only the 

results are presented below.  The system takes the form of Equation (90) with the following 

definitions: 
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The parameter ω0 is the magnitude of the orbital velocity of the reference coordinate system with 

respect to the inertial coordinate system.  It should be noted that this is assumed to be a constant 

throughout the derivations.  There will be some slight deviation of the angular velocity for 

noncircular orbits.  However, the average orbital velocity may be used in the calculations.  Also, 

the above system dynamics take into account the gravity gradient effects when computing the 

linearized system.   

The contribution from the input can be taken into account:  

 ( ) ( )( )⎥⎦
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The vector b is the geomagnetic field vector in the fixed body coordinate system.  The matrix X 

is the normal skew symmetric matrix associated with the cross product.  It is defined as 
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Note that if the spacecraft remained in its nominal attitude, and the changes in the 

geomagnetic field due to the Earth’s rotation are ignored, then the linear matrix B(t) would be 

periodic.  Thus, it is reasonable to assume that a steady state matrix solving the algebraic Riccati 

equation would be a reasonable approximation to the optimal solution.  

5.6.2.1 Integral control  

Integral control has many known benefits.  Notable are its stabilizing tendencies and 

noise reduction.  To introduce integral control into this design, the above system is augmented as 

follows.  Introducing a new state vector consisting of the integral of the three-element quaternion 

and the previous state: 
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The modified system is 

 ( )uBxAx tlqrlqr
~~~~ +=  (104) 

The modified matrices are 

 ⎥
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5.6.2.2 Calculating the C matrix 

In the discussion above, C was calculated by averaging the effect of the matrix BR-1BT 

over one orbital period.  However, this only works if the B matrix is periodic.  Since the real 

matrix will not be exactly periodic, this technique must be modified slightly by performing the 

average over several orbits to include approximately one day’s worth of data.  This amounts to 

approximately 15 orbits worth of data.  Performing this longer integration will average out the 

effect of the rotation of the earth.  Thus, C is calculated as: 

  ( ) ( ) τττ d
T

T T∫ −=
15

0

1~~
15

1 BRBC  (107) 

In this calculation, the magnetic field vector is calculated in the reference frame, since the 

calculation assumes the satellite is in the nominal orientation.  It should be noted that it is only 

necessary to calculate C once.  This matrix is then used to solve the algebraic Riccati equation 

found in Equation (97) for Pss.     

5.6.2.3 Control algorithms 

There are two control algorithms.  The first is an offline calculation to find the matrix Pss.  

This algorithm, which is seen in Figure 16, must be run only once, prior to implementing the 

control algorithm.     

Off Line Algorithm to Calculate Pss 
Inputs.  The penalty matrices R and Q, as well as the average orbital angular velocity, ω0.     
Step 1.  Calculate nominal magnetometer values, br(t), for 15 orbits. 
Step 2.  Calculate C from Equation (107).   
Step 3.  Calculate A~  from Equation (105). 
Step 4.  Calculate Pss from Equation (97).   

Figure 16:  Pss Calculation 



 52

Before stating the main control algorithm, it is necessary to convert the extended Kalman 

filter’s state vector to the one required by the linear quadratic regulator.  The extended Kalman 

filter estimates the quaternion and angular velocity of the satellite with respect to the inertial 

frame, but the linear quadratic regulator requires them to be with respect to the orbital reference 

frame.  To convert the angular velocity, the rule stated in Equation (32) is used. 

 IRIBRB ωωω /// −=  (108) 

The angular velocity ωR/I is obtained from Equation (139).  To convert between the different 

quaternions, Equations (27) and (29) may be used as follows: 

 ( ) IBIRRB /// * qqq ⊗=  (109) 

The quaternion qR/I must be found by converting the attitude matrix AR/I, as defined in 

Equation (138).  This conversion is found in APPENDIX F.  After addressing these conversions, 

it is possible to state the linear quadratic regulator control algorithm as shown in Figure 17. 

Linear Quadratic Regulator Control Algorithm 
Inputs.  State estimate from extended Kalman filter, x; penalty matrix R, and the steady state 
matrix Pss 

Step 1.  Calculate lqrx~  from x, as outlined in Equations (108) and (109). 
Step 2.  Obtain state estimate x and magnetometer reading b.     
Step 3.  Find B~  according to Equation (106).   
Step 2c.  Find u according to Equation (95). 
Step 2d.  Find torque coil circuitry inputs as outlined in APPENDIX A. 

Figure 17:  Attitude Control Algorithm 

5.6.2.4 Results 

The simulations show that the linear quadratic control law performs satisfactorily in some 

circumstances.  Through the process of trial and error, the following were found to be good 

values of the penalty matrices.   
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 IR 7.5=  (110) 

 [ ])1.1.1.111108.1108.1108.1( 888 −−− ×××= diagQ  (111) 

Using these matrices, a number of tests have been run.  A typical plot of the satellite in 

steady-state operation is presented in Figure 18.  The time scale for this figure is in hours.  As 

can be seen, the satellite typically stays within a 5° error for the yaw, pitch, and roll angles.  This 

is clearly within the specifications required by the photomultiplier tube.   

 
Figure 18:  Typical Steady State Yaw, Pitch, and Roll Angles for Linear Quadratic Regulator Control 

A second plot is included to show how the satellite responds from some initial deviation.  

The satellite starts off at a 90° rotation about the y-axis.  This response is shown in Figure 19.  
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The time scale in this figure is in hours.  The pitch angle is the slowest of the three to converge, 

but it finally does so in approximately 8 hours.   

 
Figure 19:  Typical Yaw, Pitch, and Roll Angles for an Initial 90° Attitude Deviation.   
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6 FUTURE WORK AND OPEN ISSUES 

There are a considerable number of open issues and future work that could be done to 

improve ION’s attitude control system.  These issues shall be addressed in order of priority.   

6.1 Extended Kalman Filter Convergence Issues 

The greatest concern with the attitude control system lies in the attitude estimation 

problem.  The extended Kalman filter rarely converges to the correct attitude.  This is a major 

obstacle that needs to be addressed.  One means of doing so has been suggested in [16].  This 

paper addresses using data available from solar panels specifically to address the convergence of 

the extended Kalman filter. This technique could provide a simple fix to the problem without 

adding any more sensors. 

Another possibility involves adding additional sensors to ION.  It has recently been 

identified that the SID may easily be configured to incorporate rate gyros.  These would be used 

to measure the angular velocity of the satellite with respect to the inertial coordinate system.  

This would greatly simplify the filter, since effectively half the unknown states would be 

removed.  Both possibilities of incorporating solar panel measurements and rate gyro 

measurements could be investigated further in parallel as a means to solve these convergence 

issues.   

6.2 Implementation Issues 

A second open issue at this time lies in implementation of the attitude control system.  It 

turns out that the processing capabilities of the SID are not as extensive as was originally hoped.  

To address these issues, much of the attitude control system must be implemented off-line on the 

ground station.  Then, commands may be sent through the communication system to ION as to 
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how to correctly use the torque coils.  This will add huge amounts of delay to the attitude control 

system.  This could cause severe problems for the linear quadratic regulator, which is a closed 

loop state feedback control law.  One way to address this issue would be in implementing 

another control law.  In [14], a number of alternative attitude control laws have been listed.  

Some of the alternative methods include fuzzy control, sliding mode control, and a projection 

based control law.  However, further research may provide additional control laws which might 

be more suited to an open loop approach.   

6.3 Detumbling Mode 

In addition to the normal control law, many satellites utilize a detumbling control law.  

This secondary control law is used initially to remove angular momentum in the case that the 

satellite is deployed with an appreciable spin rate.  It might be worthwhile to consider adding a 

detumbling control law to initialize the attitude control system, since simulations have shown 

that the linear quadratic control law does not perform well for initial conditions with large 

angular momentum. 

6.4 Simulation With Real Magnetometer Data  

Magnetometers have been used in space applications for many years.  Testing the attitude 

control system with real magnetometer measurements (as opposed to merely the IRGF data) 

could prove invaluable as a means of verifying the control system.  In [16], the authors mention 

testing their extended Kalman filtering system with data taken by the Danish ∅ersted satellite.  It 

would be beneficial if this data could be obtained to test ION’s attitude control system. 
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6.5 Reducing the Order of Harmonics in the Magnetic Field Model 

One of the most mathematically intensive components of the attitude control system is 

calculating the magnetic field.  Currently the IRGF field model calculates the spherical 

harmonics n and m of order 10 for each.  It might be possible to reduce the number of 

components necessary in the calculation and drastically reduce the computational burden without 

losing much accuracy in the magnetic field model.  This is one possible technique that could be 

explored. 

6.6 Flight Torque Coils  

At this point, the final flight torque coils have yet to be constructed.  The initial torque 

coil design has been completed with the estimated space available for each coil.  These results 

are presented in APPENDIX A.  However, these results may change slightly due to the actual 

volume constraints inside of the satellite.  After the finial available volume has been determined, 

Equation (8) can be used to find the correct number of turns for the flight torque coils.  Then, it 

will be necessary to construct these final coils.    

6.7 Testing 

Besides the open issues that are listed above, ION’s entire attitude control system design 

has been finalized.  However, at this point extensive testing is still necessary to verify the 

functionality of the design.  Although all of the necessary circuitry to run the magnetometer and 

torque coils has been designed, these circuits require extensive testing to verify correct 

functionality.  It will also be necessary to measure the important parameters from each of the 

torque coils.  These parameters are listed later in TABLE 2 in APPENDIX A.   It will be 

necessary to ensure that the magnetometer calibration functions correctly and accurately samples 

the magnetic field.  This functionality is described in APPENDIX B.  The magnetometer’s 
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functionality may also be verified from measurements by a Gaussmeter.   All of these tests must 

be completed to ensure the hardware functions properly.   
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APPENDIX A:  TORQUE COIL IMPLEMENTATION 

The actual implementation of the torque coils in ION is relatively straightforward.  The 

only required elements are coils themselves and their necessary circuitry.  The torque coils are 

made of Belden heavy armored poly-thermaleze 38 AWG magnet wire.  For the preliminary 

parameters relating to ION’s torque coils, see TABLE 2.       

TABLE 2:  Torque Coil Parameters 

Torque Coil Parameters 
Coil X Y  Z 
H bridge Resistance  .4Ω .4Ω .4Ω 
Cross Sectional Area 1.32x10-8 m2 1. 32x10-8 m2 1.32x10-8 m2 

Conductivity of Copper 5.8x107 Ωm 5.8x107 Ωm 5.8x107 Ωm 
Nominal Unregulated Voltage 11.1V 11.1V 11.1V 
Length of First Side of Coil .184 m .111 m .075 m 
Length of Second Side of Coil .083 m .072 m .075 m 
Number of turns 1084 1582 1930 
Coil Resistance  1232 Ω 1232 Ω 1232 Ω 
Max Current 9.01x10-3 A 9.01x10-3 A 9.01x10-3 A 
Max Magnetic Dipole Moment .149 Am2 .114 Am2 .0978 Am2 
Max Magnetic Field 1.03 G 1.89 G 2.62 G 

A.1 Torque Coil Circuitry 

The circuitry necessary to interface the torque coils and the SID is depicted in the 

schematic in Figure 20.  Since the three torque coils have identical circuitry, explanation given in 

this discussion will be limited only to the x torque coil.  Besides the torque coil, the only other 

components in the circuit are two pull-up resistors and two ICs:  the Texas Instruments 

TPIC0108 is the H-bridge logic which determines the direction of the current flow of the torque 

coil. The Maxim MAX319 serves as an interface between the control signals and the H-bridge.    
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Figure 20:  Torque Coil Schematic 

Besides the various voltage buses necessary to power the chips, two inputs are required 

from the microprocessor.  “XF/R” is a signal which controls the direction of current flow in the x 

torque coil.  If the voltage is + 5 V, then the current in the coil flows in the forward direction, 

from the positive to the negative terminal.  If the voltage is 0 V, then the current in the coil flows 
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in the reverse direction, from the negative to the positive terminal.  The coil should be oriented in 

ION in such a way that when “XF/R” is +5 V, the magnetic field generated is in the xB direction, 

as defined in Figure 7.  The other signal, “XPWM,” is a pulse width modulation signal which 

alternates between 0 and + 5 V at a specified frequency and duty cycle.  The frequency of this 

signal is irrelevant.  Whenever the voltage of “XPWM” is +5 V, the torque coils are firing.  

When the voltage is 0 V, they are not in operation.  Thus, when the coils are in operation, the 

duty cycle of “XPWM” acts as a throttle by controlling the percentage of time the coils are in 

use.  For more information on the torque coil circuitry, please see the documentation provided by 

the manufacturers.    

A.2 Calculating Inputs for Torque Coil Circuitry   

 The control law uses the magnetic moment generated by the torque coils as the control.  To 

generate the correct torque called for by the control law, it is necessary to convert between this 

magnetic moment and the six inputs to the torque coil circuitry.  This calculation is outlined 

below.  First, in case of torque coil saturation effects, the scale factor β is calculated as 

 { }
⎪⎭

⎪
⎬
⎫
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⎪
⎨
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jjj

j ,,:1,maxβ  (112) 

The parameter uj is the jth component of the requested input.  The other parameters,  Nj, Ij, and Aj, 

are the number of turns, torque coil current, and coil area, respectively, of the jth torque coil.  The 

parameter β takes on values greater than one in the event of torque coil saturation.  In other 

words, the computations are requesting more torque than the coils are able to provide.  If there is 

no saturation, then β will be one.  The jth duty cycle output is calculated as 
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The jth direction output is simply 

 ( ) { }zyxjuRJF j ,,,5.2sgn5.2/ ∈+=    (114) 
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APPENDIX B:  MAGNETOMETER IMPLEMENTATION 

As mentioned above, the particular magnetometer which is being flown aboard ION is 

the Honeywell HMC2003.  For this sensor to function properly, it must be implemented correctly 

and integrated into ION.  This implementation consists of three major parts: the additional 

circuitry necessary to interface the SID with the magnetometer, the calibration procedure for the 

magnetometer, and the procedure to take accurate readings.   

B.1 Magnetometer Circuitry 

See Figure 21 for the complete magnetometer circuit schematic.  The magnetometer 

circuit consists of three ICs, three resistors, eight capacitors, two diodes, and a transistor.  The 

circuitry comes right from the example circuits found in the Honeywell documentation.   

B.1.1 Hardware 

The Maxim MAX662A chip and its associated circuitry are used to generate a 20-V 

signal.  The International Rectifier IRF7105 chip with its associated circuitry uses this 20-V 

signal, along with the “Set” and “Reset” signals from the SID to generate the “SR+” signal to 

calibrate the magnetometer circuit.  Finally, the Honeywell HMC2003 is the magnetometer that 

senses the magnetic field.   

B.1.2 Signals 

The only two inputs to the system are the “SET” and “RESET” signals.  They are 

generated by the microprocessor and are used to calibrate the magnetometer.  See Figure 22 for 

these signal specifications.  TRS and TSR must be greater than 5 µs.  TPWS and TPWRS should each 

be approximately 2 µs.   The duration of TSET is not nearly as critical, but should be long enough 
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to ensure a sufficient delay between the “S/R+” signal pulses, while also providing ION with 

enough time to sample the magnetometer.  A typical value for this duration is approximately 25 

µs. 
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Figure 21:  Magnetometer Circuit Schematic 

 

 

 

 

 

 

Figure 22:  Signal Specifications for “Set,” “Reset,” and “S/R+” 
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The circuit contains three analog outputs:  “Xout”, “Yout” and “Zout”.  These are the 

measurements of the magnetic field in magnetometer coordinate system, as seen in Figure 23.  

Thus, it is essential that the magnetometer be mounted correctly so that its coordinate system is 

properly aligned with the fixed body coordinate system of the satellite, as seen in Figure 7.  

Thus, xM = xB, yM = yB, and zM = zB.   .   

For further information regarding the magnetometer circuit, see the documentation 

provided by the manufacturers.  It is available at 

http://www.ssec.honeywell.com/magnetic/datasheets.html. 

 

  

 

 

 

Figure 23:  Magnetometer Coordinate System 

B.2 Calibration 

The calibration of the three-axis magnetic sensor takes place in two steps.  The 

calibration for hard and soft metals is done initially before ION is launched.  The calibration for 

temperature offsets and local magnetic effects must be performed each time the sensor is 

saturated.  Since the sensor is saturated each time the torque coils are fired, this calibration will 

have to be performed at every reading. 
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B.2.1 Temperature and local magnetic effects 

The Honeywell HMC2003 contains special internal circuitry to compensate for 

temperature and local magnetic effects.  When the set-reset sequence described above is 

activated, these effects are compensated for.  Thus, there is no necessary additional calibration 

besides running the set-reset sequence described above.   

B.2.2 Hard and soft metal calibration   

The effects associated with the hard and soft metal disturbances depend on the location 

and distance of any metal on the spacecraft in relation to the magnetometer.  Thus, this 

calibration may not take place until the satellite has been assembled.  It should then be taken to a 

remote area and calibrated to remove the hard and soft metal effects.   

The theory behind the calibration is fairly straightforward.  The hard and soft metal 

interference tends to cause an offset and a warping to the measured values.  Thus, the 

magnetometer can be properly adjusted with a linear model of the following form: 

 },,{, zyxwbVaB wwwW ∈+=  (115) 

The parameter Bw is the magnetic field in the wth direction, Vw is the output of the 

magnetometer of the wth axis.  The parameters aw and bw are the scale factors and offset caused 

by the hard and soft metal effects.   

When measuring magnetic fields prior to launch, they can be broken into components 

parallel and perpendicular to the surface of the Earth.  Only the component parallel to the Earth’s 

surface is used in the calibration.  The perpendicular component is ignored.  In the calibration, 

the orientation of the satellite is changed to measure the parallel component of the Earth’s field 

in the positive and negative x, y, and z directions.  To do this, the satellite is brought to a remote 
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area with no metallic interference and ION is then placed on its z face.  The set-reset sequence 

described above is used to initially calibrate the sensor for the temperature and local magnetic 

effects.  The satellite is slowly rotated one revolution, and the maximum and minimum 

magnetometer voltages from the x and y sensors are recorded.  The satellite may then be placed 

on either the x or y face, and the procedure is repeated, measuring only the maximum and 

minimum voltages from the z sensor.   

The key insight behind the calibration is as follows:  when the measured voltage is at a 

maximum or a minimum in any given direction, the component of the Earth’s magnetic field 

parallel to the Earth’s surface is completely contained in that reading.  This reduces the two-

component vector into a scalar.  Thus, the six measurements made above result in six 

independent values of the parallel component of the Earth’s magnetic field.  These may be 

represented by the following six resulting equations: 

 ( ) { }zyxwbVabVaB wwwwwwparallel ,,,minmax ∈+−=+=  (116) 

In these six equations, there are six unknowns:  the scale factors and the offsets in the x, 

y, and z directions.  Bparallel may be obtained by a computer software model, or from a chart, in 

[7].  After obtaining this value, the solutions to the equations are 
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 { }zyxwVVab wwww ,,),( minmax ∈+−=    (118) 

The magnetometer readings always contain some noise, and there is always some local 

variation in the magnetic field at particular locations.  Therefore, in order to ensure accuracy in 
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calibration, it is necessary to complete this calibration numerous times at various locations and 

then to average the results.   

B.3 Normal Operation Procedure 

For ease of explanation, let the three voltages from the outputs of the magnetometer be 

represented as a vector as follows: 
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Under normal operation, the “Set” and “Reset” signals described in Figure 22 must be 

sent from the SID to the magnetometer circuitry in order to obtain an accurate reading.  During 

this sequence, SID will store two values of v.  The first is to be recorded following TPWS and 

before the expiration of TSET.  This reading will be referred to as vSET.  The second reading, 

which will be referred to as vRESET will be made after TPWRS.  To obtain the sample voltage, the 

following calculation is made: 
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Then the magnetic field estimates may be calculated as 
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The parameters used in this calculation were obtained from the hard and soft metal 

calibration, as described above.  Clearly, bm is the magnetic field measured in the magnetometer 

fixed coordinate system, as seen in Figure 23.  However, since the magnetometer has been 
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correctly mounted, this is also the same as the fixed body coordinate system, which is seen in 

Figure 7.  So, bm is equivalently the geomagnetic field reading taken with respect to the fixed 

body coordinate system.    
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APPENDIX C:  OVERVIEW OF THE ATTITUDE CONTROL 
SYSTEM 

This appendix consists of a flow diagram for the entire attitude control system, which is 

found in Figure 24.  In this diagram, rounded boxes represent variables, while square boxes 

represent algorithms.  All algorithms include references to portions of the thesis that contain the 

necessary details to perform them.     

To implement this system, there are a number of necessary initial conditions.  It is 

necessary to know the initial time t0, sampling time T, and final time tf.  To perform the attitude 

determination, it is necessary to know the initial velocity v0 and radius r0.  To begin the attitude 

estimation algorithm, it is necessary to have initial estimates for ION’s attitude IB /
0q̂  and angular 

velocity IBω /
0ˆ .  It is also necessary to estimate the initial disturbance torque td0 and the initial 

covariance matrix P0
-. 

The entire system is implemented in software with the exception of reading the 

magnetometer and outputting values to torque coil hardware.  The magnetometer is sampled 

every T seconds, beginning with the initial sample time.  At each sample, the orbit propagation 

algorithm computes the location of ION.  This information is used to calculate the nominal 

magnetic field value.  The extended Kalman filter compares these values to improve the estimate 

of the attitude of the system.  Finally, the attitude control law computes the necessary parameters 

to run the torque coils.  
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Figure 24:  Attitude Control System Flow Diagram 
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APPENDIX D:  CONVERSION BETWEEN THE RADIUS AND 
VELOCITY VECTORS AND THE ORBITAL ELMENTS  

Conversion between the radius and velocity vectors to the classical orbital elements is a 

fairly straightforward process.  In this paper, only the fundamental equations will be given.  For 

examples of their development, see [6].  See Figure 10 for a picture of the orbit for the location 

of appropriate vectors defined below.   

D.1 From the Radius and Velocity to the Orbital Elements 

Given the radius and velocity vectors in the Geocentric Celestial Inertial coordinate 

system, r and v, the first step in finding the orbital elements lies in obtaining the vector h, which 

is defined as  

 vrh ×=  (122) 

The parameter h is a constant vector for all position and velocity vectors in a given orbit, and 

defines the orbit plane.  Next, the nodal vector is defined as 

 hzn I
ˆ×=  (123) 

The nodal vector defines the ascending intersection of the reference plane and the orbital plane.  

Once these two parameters have been defined, it is possible to directly solve for the orbital 

elements through the following equations: 

 
122
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=
µ
v

r
a  (124) 

 ( ) µµ /)()( 2 vvrre •−−= rv  (125) 



 73

 ⎟
⎠
⎞

⎜
⎝
⎛= −

h
hi z1cos  (126) 

 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

<
≥

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛

=Ω
−

−

0n if
0n if

  
cos2

cos

y

y

1

1

n
n

n
n

x

x

π
 (127) 

 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

<
≥

⎟
⎠
⎞

⎜
⎝
⎛ •

−

⎟
⎠
⎞

⎜
⎝
⎛ •

=
−

−

0e if
0e if

  
cos2

cos

z

z

1

1

ne

ne
en

en

π
ω  (128) 

 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

<•
≥•

⎟
⎠
⎞

⎜
⎝
⎛ •

−

⎟
⎠
⎞

⎜
⎝
⎛ •

=
−

−

0v if
0 if

  
cos2

cos

1

1

r
vr

re

re

er

erf
π

 (129) 

A few points must be made about these equations.  First of all, the eccentricity e is simply 

the norm of e as computed in Equation (125).  Since the inclination takes on values only from 0 

to π, Equation (126) may be used to directly calculate i.  However, the angles defined in 

Equations (127) through (129) take on values of 0 to 2π.  Thus, the principle value of the inverse 

cosine will not guarantee the correct solution.  As such, there are two possible solutions 

depending upon the given conditions to determine whether the principle value solution is correct 

or not.     

D.2 From the Orbital Elements to the Radius and Velocity  

The radius vector r in the inertial reference frame may be found by the following 

equation: 
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The velocity vector v in the inertial reference frame is obtained as follows: 
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APPENDIX E:  CONVERSIONS BETWEEN COORDINATE 
SYSTEMS 

As outlined in the third section, it is possible to convert between various coordinate 

systems by obtaining the attitude matrix.  This section will give the various attitude matrices 

necessary for these conversions.  Then, performing the conversions is as simple as performing 

the appropriate matrix multiplication.   For example, to convert between coordinate systems C 

and D, the same vector v may be written as a linear combination of both bases: 

 [ ] [ ] DC vyyxvyyxv DDDCCC ==    (132) 

Both vC and vD are the appropriate three-dimensional vectors necessary to obtain v in the bases 

of coordinate systems C and D, respectively.   If AC/D is the attitude matrix representing the 

orientation of coordinate system C to D, then the following equations provide the conversions 

from vC to vD: 

 DC vAv DC /=  (133) 

 ( ) C
T

CD vAvAv DCCD // ==  (134) 

E.1 The Attitude Matrix for Converting Between the Geocentric 
Celestial Inertial and Orbital Reference Coordinate Systems 

See Figure 5 for a view of the Geocentric Celestial Inertial coordinate system and Figure 

8 for the Orbital Reference coordinate system.  The attitude matrix defining these coordinate 

systems is a function of the radius and velocity vectors at the satellite’s precise location.  Let r 

and v be the radius and velocity vectors in the inertial reference frame.  The vector zR is the unit 

vector in the opposite direction of the radius vector: 
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The vector xR is the unit vector in the direction of the projection of the velocity vector into the 

orthogonal subspace of the radius vector.  This can be computed as 
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The vector yR is defined by the cross product of zR and xR:   
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Substituting these equations yields the appropriate attitude matrix, AR/I: 
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E.2 Obtaining the Angular Velocity of the Reference Frame With 
Respect to the Inertial Frame.     

Since the fixed body coordinate system is not dependent upon the orientation of the 

satellite, its angular velocity relative to the geocentric inertial coordinate system is only a 

function of the radius and velocity vectors.  It is simply computed as follows: 

 Rr
y

rv
ωR/I

2

×
−=  (139) 
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Note that for a circular orbit, r and v are always perpendicular to each other and have the 

same magnitude.  Thus, in this case, the angular velocity is constant for all points in the orbit.   

E.3 The Attitude Matrix for Converting Between the Geocentric 
Celestial Inertial and Geocentric Fixed Coordinate Systems 

See Figure 5 for a picture of the Geocentric Celestial Inertial coordinate system and 

Figure 6 for the Geocentric Fixed coordinate system.  Since both the Geocentric Fixed and 

Geocentric Celestial Inertial coordinate systems have the third axis from the center of the Earth 

to the north pole, transformation between the two systems is simply a rotation around this axis of 

an angle θ  as shown in Figure 25.  This angle is known as Greenwich Mean Sidereal Time.  It is 

a well-known fact that the Earth rotates about the axis from its center to the North Pole at a rate 

of one rotation for every 23 h, 56 min, and 4.1 s.  Since the Geocentric Fixed coordinate system’s 

axes are fixed within the earth, they also rotate at this same rate.  Thus, Greenwich Mean 

Sidereal Time also rotates at this same rate.  It can be found as a simple function of time 

according to [17] as 

 d *8996.30038809  48949612127.4 ∆+=θ  (140) 

The parameter ∆d is the total time measured in days, including partial days as decimal 

equivalents, which has passed since the epoch time.  The epoch is J2000, which means d0 is 

January 1st, 2000, at 12:00:00 noon.  Equation (140) does not take into account the precession or 

nutation of the Earth’s equatorial axis.  However, since these terms are small, this will provide a 

reasonable approximation in the calculation of θ.   
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Figure 25:  The Earth’s Equatorial Plane 

Once θ has been calculated, it is trivial to calculate the matrix representing the attitude of 

the Geocentric Fixed coordinate system with respect to the Geocentric Celestial Inertial 

coordinate system.  It is as follows:   
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E.4 The Satellite Fixed Body Coordinate System 

The attitude of the satellite representing the orientation of the Satellite Fixed Body 

Coordinate System is usually represented with a quaternion vector.  Thus, to make conversions 

involving fixed body coordinate system, it is necessary to either obtain the attitude matrix from 

the quaternion as outlined in APPENDIX F or use the quaternion multiplication rule in Equation 

(30).    
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APPENDIX F:  CONVERSIONS BETWEEN ATTITUDE 
REPRESENTATIONS  

It is more convenient to use various attitude representations for different tasks.  The 

attitude matrix is good for vector conversions.  The quaternion is ION’s chief attitude 

representation, primarily because of its ease for attitude propagation.  The Euler angles provide 

an intuitive way to visualize results.  Thus, it is only natural to want to convert between these 

various systems when performing different functions.  This section contains the necessary 

information to convert between these three representations.  This information is available in any 

standard orbital mechanics text such as [1], [4], or [18]. 

Throughout this section, the following notation will be used.  Let AC/D be the attitude 

matrix, qC/D be the quaternion, and φ, θ, and ψ be the Euler angles associated with the attitude of 

coordinate system C with respect to coordinate system D.  Let AC/D be represented as 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211
/

AAA
AAA
AAA

DCA  (142) 

Let qC/D be represented as 
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F.1 Conversion from the Quaternion Vector to the Attitude Matrix 

It is straightforward to convert from the quaternion to the attitude matrix.  This 

calculation is as follows: 
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F.2 Conversion from the Attitude Matrix to the Quaternion Vector 

Conversion from the attitude matrix to the quaternion vector is not as trivial as the 

previous conversion.  One way to make this conversion is as follows: 

 3322112
1

4 1 AAAq +++±=  (145) 

 )()4( 3223
1

41 AAqq −= −  (146) 

 )()4( 1331
1

42 AAqq −= −  (147) 

 )()4( 2112
1

43 AAqq −= −  (148) 

The sign ambiguity in Equation (145) is irrelevant.  Either answer provides a correct 

representation of the quaternion vectors.  For convenience, the positive sign may always be 

chosen such that q4 is positive.  The only drawback from this method is that if q4 is very small, 

the results obtained from Equations (146) through (148) will yield high numerical errors.  

However, in this case, it is possible to solve directly for one of the other parameters as follows: 

 3322112
1

1 1 AAAq −−+±=  (149) 

 3322112
1

2 1 AAAq −+−±=  (150) 

 3322112
1

3 1 AAAq +−−±=  (151) 
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Each of Equations (149) through (151) will have its own resulting set of equations similar 

to Equations (146) through (148).  However, deriving these equations by manipulating Equation 

(144) is trivial; therefore, the results are omitted from this appendix for the sake of brevity.   

F.3 Conversion from the Euler Angles to the Attitude Matrix 

Euler Angles are based upon taking successive rotations about three axes.  There are 

different sets of Euler angles depending upon which axes are chosen and what order they are 

rotated about.  For each different set of Euler angles, there is a different conversion.  The results 

presented here will be for the “3-2-1” rotation order which is discussed in the third section.  It is 

a straightforward process to convert from these angles to the attitude matrix: 
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F.4 Conversion from the Attitude Matrix to the Euler Angles 

Unfortunately, converting from the attitude matrix to the Euler angles is not as trivial as 

vise versa.  The conversions can be obtained by manipulating Equation (152) and using 

trigonomic inverses to obtain the necessary angles.  The chief problem with this method is that 

the inverse trigonomic functions have quadrant ambiguities.  Since the Euler angles are used 

primarily for reference purposes, it is probably sufficient for most cases merely to ignore the 

ambiguities.  If this is done, the following equations may be used to solve for the Euler angles.  

The roll angle is  
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The pitch angle is 
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 13arcsin A−=θ  (154) 

The yaw angle is 
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APPENDIX G:  QUATERNION MATHEMATICS 

Quaternions are one useful method of quantifying the attitude of a spacecraft.  This 

appendix introduces the concept of the quaternion and outlines some of the mathematical rules 

necessary to work with quaterions.  Simply put, a quaternion is a vector with four components 

which is defined as follows: 
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In this formulation, i, j, and k are numbers, analogous to the “i” of imaginary numbers, for which 

the following laws apply: 

 1222 −=== kji  (157) 

 kjiij =−=  (158) 

 ikjjk =−=  (159) 

 jikki =−=  (160) 

Note that multiplication between these “imaginary” parameters is not commutative.  The 

conjugate of q is denoted q* as follows: 

 3214 kqjqiqq −−−=q*  (161) 

The vector part of the quaternion is typically denoted as  

 321 kqjqiq ++=q  (162) 
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Quaternion multiplication is defined by using the rules of Equations (157) through (160) 

to obtain the following result: 
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The norm of q is defined as 
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For computational purposes, q is often denoted as a vector.  The row vector containing 

one and the “imaginary” component is only implied.  Thus, q is represented alternatively as 
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In this setting, the quaternion multiplication performed in Equation (163) may be represented 

through a matrix multiplication as 
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APPENDIX H:  SIMULATION OVERVIEW 

One of the chief aspects involved in the attitude control design is verification of the 

design through simulation.  An entire simulator was built from the ground up in the Matlab and 

Simulink environments for this purpose.  Since one of the chief aspects of this simulation 

involves numerically integrating the satellite dynamics and kinematics equations, and Simulink 

is a great tool for performing numerical integrations, all of the attitude propagation is performed 

in Simulink.  Orbit propagation and magnetic field models were created in the Matlab work 

environment. 

H.1 Flow Diagram of the Simulations 

The flow diagram for the simulations is seen in Figure 26.  This diagram is quite similar 

to the diagram of the attitude control system in Figure 24.  The biggest change is that it is 

necessary to simulate the attitude of the satellite with an attitude propagation algorithm.  To 

increase the accuracy of these simulations, it is necessary to simulate disturbance torques that are 

present in the space environment.  The only other difference is that it is also necessary to 

simulate the magnetometer readings.  This is done rotating the magnetic field vector to the fixed 

body coordinate system.   

H.2 Magnetometer Simulation 

To simulate the vector the magnetometer would read, only a simple matrix multiplication 

is necessary.   

 im bAb IB /=  (167) 
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Figure 26:  Simulation Flow Diagram 
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The vector bm is the simulated magnetometer reading, and the vector bi is the geomagnetic field 

in the inertial coordinate system.  The matrix AB/I can be computed directly from qB/I as given in 

Equation (144).   

H.3 Modeling Disturbance Torques 

In the dynamics equation, Equation (39), tT is the total applied torque.  This will include 

the control torque generated by the coils as well as disturbance torques.  To increase the accuracy 

of simulations, it is important to model the disturbance torques as closely as possible.  The major 

sources for disturbance torques given in [1] are gravity gradient torque, solar radiation torque, 

aerodynamic torque, and magnetic disturbance torque.  Of these four, the magnetic disturbance 

torque may be considered as negligible compared to the torque produced by the coils.  The solar 

radiation torque is difficult to model because it depends both upon the solar radiation directly 

from the Sun, and from reflections off the Earth, moon, and other satellites.  Since these effects 

are minimal, due to the small size of ION, they will also be ignored.  However, the other two 

sources of disturbance torque will be modeled to some extent. 

H.4 Gravity Gradient Torque  

Gravity gradient torque is caused by the variation in the Earth’s gravitational field.  Since 

the gravitational field decreases as one over the square distance from the earth, the entire satellite 

is not attracted to the earth with the same gravitational force.  As such, over time, this torque will 

tend to align the satellite’s long axis with the Earth.  A basic first order approximation to the 

gravity gradient torque is as follows: 

 )ˆ~(ˆ3
3 ee

e
gg r

rIrt ×=
µ  (168) 
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The parameter µ is the same gravitational constant used in Equation (46) and re is the 

vector from the ION’s center of mass to the Earth’s center of mass in the Fixed Body coordinate 

system.  The matrix I~  is the inertia matrix which was introduced in Equation (36).  If r is the 

vector from the earth to the satellite in the inertial coordinate system, then re is found by the 

following equation: 

 rr IB
e A /−=   (169) 

H.5 Aerodynamic Torque 

The aerodynamic torque is caused by interaction between the spacecraft and the 

atmosphere.  Since the satellite is not traveling in a perfect vacuum, there is some atmospheric 

drag acting on the satellite.  Not surprisingly, this force also creates a torque that causes the 

satellite to rotate.  Clearly, the aerodynamic torque is largely dependent upon the density of the 

atmosphere.  As such, for larger orbits, this torque becomes negligible as the density of the 

atmosphere decreases.  However, for low orbits, aerodynamic torque may be quite substantial.   

The equation that governs this disturbance torque, as given in [1], is as follows: 

 
{ }( )∫

∫
××•+××•

+×•=

dAvC

dAvC

ssnssnD

snDa

rrωvarvrωa

rvvat
IBIB )()ˆ()ˆ)((

)ˆ)(ˆ(
/

00
/

02
1

00
2
02

1

ρ

ρ
 (170) 

The parameter CD is the drag coefficient, which is a number between 1 and 2, with the 

upper limit typically chosen when no information is available.  The parameter ρ is the 

atmospheric density, which is a function of the altitude of the spacecraft.  At 700 km, it is 

approximately 3.614x10-14 kg/m3.  The other parameters are relatively simple:  an is the unit 

vector normal to the surface of the satellite; v0 is the velocity of the satellite in the fixed body 
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reference frame.  Thus, if v is the velocity of the satellite in the inertial frame, v0 is computed as 

follows: 

 vAv IB /
0 =  (171) 

The vector rs is the vector from the center of mass of the satellite to the infinitesimal area, 

dA and ωB/I is the angular velocity of the satellite.  Note that Equation (170) must be evaluated 

for each surface of the satellite where an•v0 is greater than 0.  In other words, the atmospheric 

torque only acts on those sides of the satellite that are in the same general direction as the 

velocity.   

The first term in Equation (170) governs the torque produced by the general translation of 

the satellite.  The second integral is caused by the spacecraft’s angular velocity.  As long as 

ωr<<v0, then this term may be ignored.  This will be the case for satellites with small angular 

velocities, which is the case under normal attitude control.   

Since ION is a cube, it is fairly straightforward to evaluate Equation (170), under the 

circumstances described in the previous paragraph.  Letting 
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The distances ∆x, ∆y, and ∆z are the from the satellite’s geometric center to its center of mass.  

Using these definitions for Equations (172) and (173),   
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Since 0v̂a •n  is a constant, it may be pulled out of the integral.  After substituting in Equation 

(174), then (170) may be written as 
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To make the development more concrete, the results will be derived for the drag on the 

+X side of the craft.  Then the x component of the vector is always constant and equal to Xl/2, 

which is the distance from the edge of the craft to the geometric center.  Also, an•v0 is simply vx, 

the component in the x direction.  Substituting this information along with the result for the 

differential area, Equation (175) becomes the following double integral: 
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After evaluating the integrals the following result is obtained:   
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Notice that the vector term may be simply written as 



 91

 
0

2

)
2

(

)
2

( v×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
∆

−∆

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆−−∆−

∆+∆−

∆+∆−

z
y

X
x

x
X

vyv

zvx
X

v

yvzv l

l
yx

x
l

z

zy

 (178) 

Substituting Equation (178) into Equation (177) and pulling out YlZl, which are common to all 

terms, yields the final result: 
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To obtain the result for the –X side of the craft, the only change is to replace Xl by –Xl in 

the rs vector and an•v0 now becomes -vx instead of vx.  Thus, the result is 
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Note that the value –vx will be a positive number, since vx must be negative for their to be a 

contribution to the aerodynamic torque from the –X side.  Combining this fact with the 

knowledge that there can only be a contribution to the aerodynamic torque from either the + or – 

X side, but not both, it is possible to combine Equations (179) and (180) into one final result 

representing the contribution from the x direction: 
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 Similar results may be obtained for the Y and Z sides.   They are as follows: 
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Finally, the total aerodynamic torque is obtained by adding Equations (181) through (183): 

 aZaYaXa tttt ++=  (184) 

 

H.6 Disturbance Torque Results 

Using these results obtained for the disturbance torques, it is possible to update the 

dynamics equation.  Define the total disturbance torque td as 

 aggd ttt +=  (185) 

The vector tgg is defined in Equation (168), and ta is defined in Equation (184).  Using these 

definitions, then Equation (39) may be updated as follows:   

 hωtth IB ×−+=
⎭
⎬
⎫

⎩
⎨
⎧ /

dm
Bdt

d  (186) 

The vector tm is the magnetic torque as defined in Equation (3).   
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H.7 Attitude Propagation Algorithm 

Clearly the dynamics and kinematics equations will evolve naturally by themselves when 

ION is in orbit.  Nevertheless, to run the simulation, it is necessary to propagate the spacecraft’s 

attitude.  This algorithm is seen in Figure 27.  In some situations, it is helpful to propagate ION’s 

attitude with respect to the inertial frame.  In others, it is more helpful to propagate the attitude 

with respect to the orbital reference frame.  For the first case, it is possible to numerically 

integrate Equation (41) using ωB/I and qB/I.  For the later case, it is necessary to first obtain ωB/R 

by using the rules outlined in Equations (31) and (32) as follows: 

 IRIBRB ωωω /// −=  (187) 

Note that ωR/I is a function of the radius and velocity vectors as given in Equation (139).  After 

obtaining ωB/I, Equation (41) is integrated to obtain qB/R.    

Attitude Propagation Algorithm 
Inputs:  Initial time t0, final time td, the initial angular velocity ωB/I

0, and the initial attitude q.  
If the attitude is with respect to the body frame, it is necessary to have the initial radius r0 and 
velocity v0 vectors as well.    
Step 1.  Numerically integrate Equation (186) until time td to obtain ωB/I(t).   
Step 2.  If the desired attitude is with respect to the inertial frame, integrate Equation (41) to 
obtain qB/I at td.   
Step 3.  Otherwise, use the orbit propagation algorithm in Figure 12 to obtain r(t) and v(t) 
from t0 to td.   
Step 3.  Calculate ωR/I(t) according to Equation (139). 
Step 4.  Numerically integrate Equation (41) to obtain qB/R at td. 
Step 5.  If necessary, convert to a different attitude representation as outlined in APPENDIX F.

Figure 27:  Attitude Propagation Algorithm 
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APPENDIX I:  DERIVATION OF THE LINEARIZATIONS FOR 
THE EXTENDED KALMAN FILTER AND LINEAR 
QUADRATIC REGULATOR 

Throughout these deviations some shorthand notation shall be employed.  The angular 

velocity will be written as 
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The quaternion representing the attitude of the satellite is   
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I.1 Linear Representation of the Extended Kalman Filter  

In this section, subscripts on the quaternions and angular velocities of the body frame 

with respect to the inertial frame are omitted for notational convenience.  The equations which 

propagate the measurement update for the extended Kalman filter make use of the nine-element 

state vector defined in Equation (76).  It is restated below:  
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The vector td is the disturbance torque in the fixed body reference frame.  The system dynamics 

are given in Equation (83).  They are restated as 
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The goal of this section is to obtain the linearized system dynamics F and linearized 

output equation H.  The matrix F is found in Equation (63):  

  ( )
xxx xuF
ˆ

~,
=

∇= &
dt  (192) 

Clearly to proceed, it is necessary to find the dynamics for the perturbation ∆q.  After 

doing so, it is possible to take the gradients and evaluate along the estimated trajectory.  The 

small three-element quaternion ∆q is defined in Equation (75).  It can be rewritten as 

 1-qq ˆ
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 (193) 

The quaternion inverse for a quaternion q is simply defined as a quaternion such that 
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It may be easily seen by the chain rule that the derivative of a quaternion inverse is 

 -1-1-1 qqqq ⊗⊗−= &&  (195) 

After applying this result to Equation (193) and performing some algebraic manipulations, the 

following result is obtained: 

 ( ) ( )ωωωωqq ˆˆ 2
1

2
1 −++×∆=∆ &  (196) 

Taking the gradient yields 
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 ( ) ( ) ( )( )[ ]0IqXωωXqx +∆+−=∆∇ 2
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The transform X is the usual skew symmetric matrix associated with the cross product, as 

defined in Equation (102).  Evaluating Equation (197) along the estimated trajectory yields the 

linear equation 
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Note that when evaluating along the estimated trajectory, ∆q goes to 0, as this represents the 

deviation between the state and the estimate.   

Next, the differential equation for the angular velocity is examined.  When substituting 

for the inertial matrix as defined in Equations (35) through (37) into Equation (40), the following 

result is obtained: 
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Taking the gradient yields 
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The transformation defined by Γ is 
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Evaluating Equation (200) on the estimated trajectory yields the final result: 
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The linear equation for the disturbance torque is trivially equal to 0.  Combining these 

results yields the linear dynamics: 
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 In dealing with the output equation, the linearization takes on a different form due to the 

nonstandard innovations process defined in (85).  Thus, it is not possible to obtain H by merely 

taking the gradient of the observation equation and evaluating along the nominal trajectory.  

Instead, H is obtained by making the following observation.  The measured magnetic field may 

be obtained by rotating the estimated magnetic field through the rotation matrix defined by the 

quaternion perturbation ∆q as follows: 
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Inserting Equation (204) into Equation (85) yields the following equation: 
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However, since the estimated vector is approximately equal to the calculated vector, the 

engineering approximation can be made to obtain the appropriate output matrix: 
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I.2 Linear System for the Linear Quadratic Regulator 

In this section, the superscripts for the quaternion and angular velocities of the body 

frame with respect to the reference frame shall be omitted for a notational convenience.  The 

linear quadratic regulator uses a different state than the extended Kalman filter.  It is as follows: 

 ⎥
⎦

⎤
⎢
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⎡
=

ω
q

x lqr  (207) 

The control variable u is defined in (99) to simply be the magnetic moment m produced 

by the magnetorquers.  The goal of this section is to find the matrices A and B(t) which define 

the linear system as follows: 

 ( )uBAxx tlqrlqr +=&  (208)  

The first step in obtaining the linear approximation is to choose the nominal trajectory to 

linearize upon.  The nominal trajectory is the typical nadir pointing attitude where the reference 

system is identical to the body coordinate system.  In other words: 

 0x =nom  (209) 

Note that the dynamics of Equation (208) do not include the evolution of the fourth element of 

the quaternion q4.  Nevertheless, these dynamics are a function of this element.  Thus, the 

following derivation will make use of the full four-element quaternion.  When evaluating along 

the nominal trajectory, it will be necessary to know the nominal value of the fourth element of 

the quaternion.  From the constraint equation given in Equation (27), it is easy to show that this 

nominal value is simply one. 

The nonlinear kinematics equation is merely the first three rows of Equation (41).  It is 

repeated here as 
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To obtain the dynamics equation, the rule stated in Equation (32) is invoked: 

 IRIB ωωω // −=  (211) 

Taking the derivative of this equation yields 

 IRIB ωωω // &&& −=  (212) 

The angular velocity of the reference frame with respect to the inertial frame is defined in 

Equation (139): 
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Assuming ω0 is constant (which is true for circular orbits and almost true for near circular 

orbits), taking the derivative of Equation (213) yields 
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After substituting Equation (41) the following result is obtained: 
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The angular velocity of the body frame was expanded in Equation (199): 



 100

 
( ) ( )
( )
( ) ( ) ⎟

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−++−

−+−+−

+−−++−

−++= −

IBIBIBIBIBIBIBIB

IBIBIBIBIBIBIBIB

IBIBIBIBIBIBIBIB

IB tttIω
//////2/2/

//////2/2/

//////2/2/

1/ )(~

zyxzzxyzyxxyyxxy

zyxyyxyzzxzxzzxz

zxxyyxxzzyyzzyyz

dggm

IIIII
IIIII
IIIII

ωωωωωωωω

ωωωωωωωω

ωωωωωωωω
&  (216) 

Note that in this development, the gravity gradient torque is pulled out of the disturbance 

torque.  This is because, since the gravity gradient effect is the dominant torque, it will be 

included in the linearized dynamics.  The equation for the gravity gradient disturbance torque is 

given in Equation (168).  It is repeated here: 
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It can be shown that 
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Substituting this result into Equation (217) yields the following result: 
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The complete nonlinear dynamics are obtained by substituting Equations (215), (216), 

and (219) into Equation (212) and combining this with Equation (210).  To obtain the linear 

dynamics, it is necessary to take the gradient of the nonlinear dynamics and evaluate along the 

nominal trajectory.  This will be done by dealing with each of the equations one at a time, 

beginning with Equation (210).  Taking the gradient yields 
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1 q
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The matrix X is the normal skew symmetric matrix associated with the cross product as defined 

in Equation (102).  Evaluating along the nominal trajectory yields the linear equation 

 [ ] lqrlinear xI0q 2
1=&  (221) 

Next the linear form of Equation (215) will be found.  Taking the gradient yields 
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Evaluating this equation along the nominal trajectory yields the linear equation 
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To find the linear form of Equation (216), first the explicit equation for the angular 

velocity of the body frame with respect to the inertial frame is found by substituting Equation 

(213) into Equation (211): 
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Taking the gradient of this equation yields 
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Taking the gradient of Equation (219) requires a great deal of algebraic manipulation.  It 

is finally obtained as the following matrix equation: 
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The matrix X represents the skew symmetric matrix associated with the cross product, as defined 

in Equation (102).  Taking the gradient of Equation (216) yields 
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Substituting Equations (225) and (226) and evaluating along the nominal trajectory yields 

the final result.  Note that the nominal value for ωB/I  is obtained directly from (224) as follows: 
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Using this value in the above-mentioned substitutions yields the final result for the angular 

velocity of the body frame with respect to the inertial frame: 
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Substituting Equations (223) and (229) into Equation (212) yields the final linear 

equation for the angular velocity of the satellite with respect to the reference frame: 
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Stacking the matricides from Equations (221) and (232) yields the A matrix for the linear 

system dynamics: 
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The component from the control comes directly from Equation (216).  It is stated in 

Equation (3).  Note that this is already a linear equation.  When this linear equation is evaluated 

along the nominal trajectory, the time varying B matrix is obtained as: 
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The vector b is simply the Earth’s magnetic field in the fixed body coordinate system.    
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